
Supplementary Materials: Open-Domain Why-Question Answering with
Adversarial Learning to Encode Answer Texts

Jong-Hoon Oh§ Kazuma Kadowaki§‡ Julien Kloetzer§ Ryu Iida§¶ Kentaro Torisawa§¶

Data-driven Intelligent System Research Center (DIRECT),
National Institute of Information and Communications Technology (NICT)§

Advanced Technology Laboratory, The Japan Research Institute, Limited (JRI)‡

Graduate School of Science and Technology, NAIST¶

{rovellia, kadowaki, julien, ryu.iida, torisawa}@nict.go.jp

A Details of Our Why-QA Model

The overview of our why-question answering
(why-QA) model is illustrated in Fig. 1. The
model takes as input question q and passage p, and
then calculates as output the probability that the
passage includes an answer to the question. In this
model, fake-representation generator F , which
was detailed in Section 3.2, generates compact-
answer representation rc from answer passage p.
A question encoder and a passage encoder respec-
tively generate vector representation rq of question
q and that rp of passage p. The three representa-
tions, rq, rp and rc, are given to an answer selec-
tor, which is a neural classifier to judge whether
passage p contains an answer to question q.

In the following, we will explain the details of
the question and passage encoders, and the answer
selector.

A.1 Question encoder
The question encoder has the same architecture
as the generators in our Adversarial networks
for Generating compact-answer Representation
(AGR), which was presented in Section 3.3. It
takes a question as a primary input to be encoded
as well as a passage as an additional input used
for calculating attention feature vectors (See Sec-
tion B.2). Following the notations of the encoder
in Section 3.2, the question encoder is formalized
as:

rq = Encoder(q; θQ, p),

where θQ is a set of parameters to be learned.

A.2 Passage encoder
The passage encoder computes passage represen-
tation rp of given answer passage p = s1, . . . , s|p|,
where si is the i-th sentence in p and |p| is the
number of sentences in p. In this encoding, we ex-
ploit compact-answer representation rc computed

rq

Question
encoder

Question

rp

Passage
encoder

Passage

Answer selector

F in AGR
(Pretrained)

rc

Correct
Answer

Passage
representation

Compact-answer
representation

Question
representation

Incorrect
Answer

Figure 1: Why-QA model

by fake-representation generator F in AGR (See
Section 3.2).

This encoder first computes d-dimensional vec-
tor representation1 si of the i-th sentence in p. This
computation is performed using the same architec-
ture as the generators in our AGR (i.e., also the
same architecture as the question encoder). That
is,

si = Encoder(si; θS , q),

where θS is a set of parameters to be learned.
Then, the encoder computes attention-weighted

passage representation satt ∈ Rd×|p| by combin-
ing rc and sp = [s1, ..., s|p|] ∈ Rd×|p| as:

satt = ReLU(Ws(sp + βsp)),

β = softmax(sTpWprc),

where sp = [s1, ..., s|p|] ∈ Rd×|p|. Ws,Wp ∈
Rd×d are trainable matrices.

Finally, the CNN layer in the passage encoder
computes passage representation rp ∈ Rd using

1In our experiments, d was set to 300 (See Section 3.3).

satt as:

rp = CNN(θP , satt),

θP is a set of trainable parameters in this CNN. In
this CNN layer, convolutions are performed using
multiple filters as well as multiple filter windows
(sliding over 1, 2, or 3 sentence windows at a time
and 100 filters for each window) and then an av-
erage pooling operation is applied to the filter out-
puts.

A.3 Answer selector
Our answer selector consists of a logistic regres-
sion layer with dropout and softmax output. It
produces the class probabilities of labels y ∈
{correct, incorrect} (correct if answer passage p
includes an answer of question q; incorrect oth-
erwise). More precisely, the answer prediction is
performed by

ŷ = softmax(Wor + bo),

where r = [rq, rp, rc, rTq rp, rTc rp]T ∈ R3d+2,
ŷ is the predicted label distribution and Wo ∈
R2×(3d+2) is a trainable matrix. Finally, given an-
swer passages for the same question are ranked by
their probability of y = correct.

B Details of Word Embeddings and
Attention in Encoder

In the following, we explain the details of word
embeddings and two types of attentions that were
briefly described in Section 3.3.

B.1 Word embeddings
Let q = q1, . . . , q|q| be a question composed of
|q| words, and let t = t1, . . . , t|t| be an answer
passage or compact answer that are composed of
|t| words. We convert the word sequence of q
and p into the sequence of word embedding vec-
tors as q = [q1, . . . , q|q|] ∈ R2d′×|q| and t =

[t1, . . . , t|t|] ∈ R2d′×|t|, respectively, where qi ∈
R2d′ and tj ∈ R2d′ represent a 2d′-dimensional
word embedding vector2 for question word qi and
answer passage word (or compact-answer word)
tj . qi and tj are concatenations of two types
of pre-trained word embedding vectors, general
word embedding (Mikolov et al., 2013) and causal
word embedding vectors (Sharp et al., 2016), each
of which has d′-dimension: qi = [qg

i ;qc
i] and

2In our experiments, d′ was set to 300 (See Section 3.3).

tj = [tgj ; tcj], where qg
i ∈ Rd′ and tgj ∈ Rd′ are gen-

eral embedding vectors of qi and tj , and qc
i ∈ Rd′

and tcj ∈ Rd′ are causal embedding vectors of qi
and tj .

B.1.1 General word embeddings
We pre-trained general word embedding vectors,
such as qg

i and tgj , for about 1.65 million words us-
ing the skip-gram model with negative-sampling
in word2vec (Mikolov et al., 2013) on about
35 million sentences from the database dump of
Japanese Wikipedia (January 2015 version).

B.1.2 Causal word embeddings
The causal word embedding vectors, such as qc

i

and tcj , are used to represent the causal associa-
tions between words and are created from causal-
ity expressions. Each causality expression consists
of cause and effect parts as exemplified below.

CE: Volcanoes erupt[effect] because magma
pushes through vents and fissures.[cause].

In causality expression CE, magma and volcanoes
appear in the cause and effect parts, respectively.
Given CE, we can know that if word volcanoes ap-
pears in a why-question, like “Why do volcanoes
erupt?” then magma will be more likely to ap-
pear in the answer, like “Because magma pushes
through vents and fissures” due to the causal as-
sociation between the two words. To exploit such
an association in our why-QA method, which was
detailed in Section A, we use causal word embed-
dings that represent such causal associations.

We extracted causality expressions from 4-
billion web pages by using an existing causal-
ity recognizer (Oh et al., 2013). The recognizer
firstly extracts one or two consecutive sentences
that contain pre-defined cue words/phrases3 and
then identifies the boundaries of the cause and ef-
fect parts linked to the cue words/phrases using
sequential labeling with conditional random fields
(CRFs) (Lafferty et al., 2001), which were trained
to assign an IOB label to each word using man-
ually annotated training data4. The precision, re-
call, and F-scores reported in Oh et al. (2013) were

3We used as cue words/phrases the Japanese translations
of the following words/phrases: for, as a result, from the fact
that, because, due to, this causes, and the reason is.

4We used the same data as the one in (Oh et al., 2013) and
it was composed of 16,051 causality expression candidates,
where one or two consecutive sentences contained at least
one cue word/phrase.

83.8%, 71.1%, and 77.0%, respectively (for more
details, see Oh et al. (2013)).

As a result, we obtained about 100 million
causality expressions. Then, we created the causal
word embeddings from them by a method for com-
puting the generalized skip-gram embeddings5

(Levy and Goldberg, 2014). The basic idea of
Levy’s method is to use various types of a word’s
contexts instead of linear bag-of-words contexts
used in word2vec. In our method, given a causal-
ity expression, we regard all the words in the cause
part as the contexts of any word in the effect part,
and vice versa. For example, in the case of CE
above, the context of each of volcanoes and erupt
in the effect part is {magma, pushes, through,
vents, and, fissures} and the context of each of
magma, pushes, through, vents, and, and fissures
in the cause part is {volcanoes, erupt}. As a re-
sult of training using 100 million causality expres-
sions, we obtained 300-dimensional causal word
embedding vectors for about 1.85 million words.
Note that we mapped both the cause and effect
words into the same embedding space, while in
the original work by Sharp et al. (2016), two types
of causal and effect word embedding vectors were
mapped into two different embedding spaces.

B.2 Attention

In fake-representation generator F and real-
representation generator R, which were intro-
duced in Section 3.1, we use two types of atten-
tion mechanisms: similarity-attention (dos San-
tos et al., 2016; Tan et al., 2016) and causality-
attention (Oh et al., 2017). These attentions help
the generators to focus on words in an answer pas-
sage that are similar to or causally associated with
those in a why-question.

For example, “Honey can last a long time” in
the second sentence of answer passage P in Table 1
is related to question Q (i.e., “Why does honey last
a long time?”). The similarity-attention is used to
attend words in an answer passage that are similar
to ones in the question by using the similarities be-
tween the word embeddings of the answer passage
and the question. On the other hand, some words
in compact answer C in Table 1, such as “water”
and “microbes,” should be regarded as causally as-
sociated with words in the question, such as “last”
and “long.” Such causal associations can be ex-
tracted from a large set of causality expressions,

5https://bitbucket.org/yoavgo/word2vecf

Q Why does honey last a long time?
A While excavating Egypt’s pyramids, archaeologists have

found pots of honey in an ancient tomb: thousands of years
old and still preserved. Honey can last a long time due to
three special properties. Its average pH is 3.9, which is
quite acidic. Such high level of acidity is certainly hostile
and hinders the growth of many microbes. Though honey
contains around 17–18% water, its water activity is too low
to support the growth of microbes. Moreover honey con-
tains hydrogen peroxide, which is thought to help prevent
the growth of microbes in honey. Despite these properties,
honey can be contaminated under certain circumstances.

C Because its acidity, low water activity, and hydrogen perox-
ide together hinder the growth of microbes.

Table 1: Answer passage P to why-question Q and its
compact answer C

such as “Dried fish lasts long because it does not
contain much water and microbes cannot grow in
it.” The causality attention is computed from such
causality expressions and is used to attend the pas-
sage words causally associated with the words in
the question so that generator F generates a more
appropriate compact-answer representation.

In the following, we explain the details of
similarity-attention and causality-attention, re-
spectively.

B.2.1 Similarity-attention
As presented in Section 3.3, two generators, F and
R, have the same architecture Encoder(t; θ, q),
where θ is a set of parameters, q is a why-question,
and t is either an answer passage or a compact an-
swer. Each generator first computes the word em-
bedding vectors t = [t1, . . . , t|t|] ∈ R2d′×|t| of t
and q = [q1, . . . , q|q|] ∈ R2d′×|q| of q as in Sec-
tion B.1.

Similarity-attention is computed by the follow-
ing two steps. First, we calculate cosine simi-
larity scores for any pair of the words in q and
the words in t by using their word embedding
vectors qi and tj . Second, we use the similarity
scores to produce similarity-attention feature vec-
tor as = [as1, . . . , a

s
|t|] ∈ R|t| as:

asj = max(cos(q1, tj), . . . , cos(q|q|, tj)) ∈ R,

where cos(qi, tj) represents the cosine similarity
score between question word embedding vector qi

and passage (or a compact answer) word embed-
ding vector tj . Note that, as the j-th element of at-
tention feature vector, asj , we use the most similar
question word for each passage word tj by taking
the maximum among the cosine similarity scores,
i.e., maxi{cos(qi, tj)}.

B.2.2 Causality-attention
To compute causality-attention, we applied Oh
et al. (2017)’s method to 100 million causality ex-
pressions that was presented in Section B.1.2. Oh
et al. (2017) used a normalized point-wise mu-
tual information (NPMI) score for measuring the
strength of causal association to focus on words
in an answer passage that are causally associated
with the question. Their NPMI score between
cause word x and effect word y, npmi(x; y) (0 ≤
npmi(x; y) ≤ 1), is defined as:

npmi(x; y) = max
(

pmi(x; y)
− log p(x, y)

, 0

)
,

pmi(x; y) = log
p(a, b)

p(x, ∗)p(∗, y)
,

where p(x, y) is the probability that words x and y
respectively appear in the cause and effect parts of
the same causality expression. p(x, ∗) is the prob-
ability that word x appears in the cause part, and
p(∗, y) is the probability that word y appears in the
effect part. It is assumed that the causal associa-
tion between x and y is strong when npmi(x; y) is
high.

After calculating NPMI scores, Oh et al. (2017)
used them to produce causality-attention feature
vector ac = [ac1, . . . , a

c
|t|] ∈ R|t| as:

acj = max(npmi(tj ; q1), . . . , npmi(tj ; q|q|)) ∈ R.

In our method, given word tj in a passage (or a
compact answer), we regard that tj as cause word
x and a word in the question as effect word y, and
compute a causality-attention feature acj of tj .

B.2.3 Combining two types of attentions
We then create a vector representation a ∈ R2×|t|

by concatenating similarity-attention feature vec-
tor as in Section B.2.1 and causality-attention fea-
ture vector ac in Section B.2.2. Finally, we com-
pute attention-weighted word embedding tatt ∈
R2d′×|t| by combining t ∈ R2d′×|t| and a as:

tatt = ReLU(Wtt + Waa)

where Wt ∈ R2d′×2d′ and Wa ∈ R2d′×2 are train-
able parameters, and ReLU represents the rectified
linear units. The attention-weighted word embed-
ding tatt is used as an input to the CNN layer that
was presented in Section 3.3.

References
John D. Lafferty, Andrew McCallum, and Fernando

C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems
27, pages 2177–2185. Curran Associates, Inc.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119. Curran Associates,
Inc.

Jong-Hoon Oh, Kentaro Torisawa, Chikara Hashimoto,
Motoki Sano, Stijn De Saeger, and Kiyonori Ohtake.
2013. Why-question answering using intra- and
inter-sentential causal relations. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1733–1743.

Jong-Hoon Oh, Kentaro Torisawa, Canasai Kru-
engkrai, Ryu Iida, and Julien Kloetzer. 2017.
Multi-column convolutional neural networks with
causality-attention for why-question answering. In
Proceedings of the Tenth ACM International Confer-
ence on Web Search and Data Mining, WSDM ’17,
pages 415–424.

Cı́cero Nogueira dos Santos, Ming Tan, Bing Xiang,
and Bowen Zhou. 2016. Attentive pooling net-
works. CoRR, abs/1602.03609.

Rebecca Sharp, Mihai Surdeanu, Peter Jansen, Pe-
ter Clark, and Michael Hammond. 2016. Creating
causal embeddings for question answering with min-
imal supervision. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 138–148.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2016. Improved representation learning for
question answer matching. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
464–473, Berlin, Germany. Association for Compu-
tational Linguistics.

