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1 Implementation details

All models were trained using the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
0.0005 and with a batch size of 64. We stopped
the training of the models whenever their accuracy
on the validation set did not increase for 3 times in
a row. Word embeddings had a size of 300. RNNs
had two hidden layers and LSTM cells had a size
of 1024. MLPs had one hidden layer of size 1024.
We used the implementation released by (Johnson
etal., 2017) for the LSTM+CNN+SA architecture.

2 Hyperparameter search

For EWC, we searched for the best A value among
100, 1000, 10000. For Rehearsal, we considered
sampling size values of 100, 1000, 10000 training
examples from Task A. We reported results for the
models having the highest CL score computed ac-
cording to the validation sets of both tasks. For
EWC, the best model had A = 100; for Rehearsal,
the best model used 10000 training examples from
Task A in both orders, WH—Y/N and Y/N—WH.

3 Continual Learning Evaluation
Measures

Besides standard Accuracy (Acc), we consider
metrics that have been introduced specifically to
evaluate continual learning. In general, there is
not much agreement among authors about the
best metrics to evaluate continual learning mod-
els. Thus, Diaz-Rodriguez et al. (2018) propose a
set of comprehensive metrics which allow to eval-
uate different factors of continual learning models,
such as accuracy, forgetting, backward/forward
knowledge transfer, memory overhead, and com-
putational efficiency. In this paper, we focus on
evaluating accuracy and forgetting across tasks.
First, the authors define a measure describing the
overall behavior of continual learning models. In
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particular, for each measure ¢ describing a partic-
ular aspect of a model, let ¢; (where ¢; € [0, 1]) be
its average value and s; (where s; € [0, 1]) be its
standard deviation across r runs. Let w; € [0, 1]
(where ZZC w; = 1) be the weight given to mea-
sure ¢. Then, the CL score, which measures the
overall score of the model across tasks, is defined.
Higher values are better and the measure lies in the
range [0, 1]. Formally, it is computed as follows:

IC]
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Let R € RV*N be the train-test accuracy ma-
trix, whose element R; ; is equal to the test accu-
racy on task j after having trained the model up
to task 7, where NV is the number of tasks. In the
evaluation of the CL score, we take the following
measures into account:

e Mean accuracy (Mean acc) (Diaz-Rodriguez
et al., 2018), which measures the overall ac-
curacy of the model on the learned tasks.
Higher values are better and the measure lies
in the range [0, 1]. Formally, it is defined as:
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o Remembering (Rem) (Diaz-Rodriguez et al.,
2018), which measures how much the
model remembers how to perform previously
learned tasks. Higher values are better and
the measure lies in the range [0, 1]. Formally,
it is defined as:

Rem =1 — |min(BWT,0)|,

where Backward transfer (BWT) allows to
measure the influence that learning a task has



on the performance of the previously learned
tasks and it is formally defined as:

NN, Y (R — Rjj)

BWT = N(N-1)
2

o Intransigence (Int) (Chaudhry et al., 2018),
which captures how much a model is reg-
ularized towards preserving past knowledge
and as a consequence less capable of learning
new tasks. Lower values are better and the
measure lies in the range [—1,1]. Formally,
intransigence on the k-th task is defined as:

*
I = ap — agg,

where ay, j, denotes the accuracy on task k of
the model trained sequentially up to task k
and a;, denotes the accuracy on task k of the
Cumulative model trained on tasks 1,..., k.
In this paper, we only measure intransigence
for the second task, because we take only two
tasks into account and it does not make sense
to compute intransigence for the first task.
Hence, Int denotes I5.

CL score requires that each measure lies in the
range [0, 1] and that higher values are better. Mean
acc and Rem already satisfy these constraints,
whereas Int does not. Hence, when computing
CL score in the case of Int, ¢; is transformed to
¢i =1 —(¢; + 1)/2 to scale its range to [0, 1] and
to preserve the monotonicity of CL score.

4 Elastic Weight Consolidation

Elastic Weight Consolidation (EWC) (Kirkpatrick
et al., 2017) is a regularization approach which
introduces plasticity in artificial neural networks
by slowing down learning in weights which are
important to solve previously learned tasks. The
method takes inspiration from the human brain, in
which the plasticity of synapses which are impor-
tant to solve previously learned tasks is reduced.
EWC adds a regularization term to the loss func-
tion allowing the model to converge to parameters
where it has a low error for both tasks. In par-
ticular, if Task A and Task B have to be learned
sequentially EWC, after having learned Task A,
computes the Fisher Information Matrix, whose
i-th diagonal element assesses how important pa-
rameter ¢ of the model is to solve Task A. Then,
the model is trained on Task B starting from the

parameters previously learned to solve Task A by
minimizing the following loss function:
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where Lp is the loss function of Task B, F;; is
the ¢-th diagonal element of the Fisher Information
Matrix, 6; is the i-th parameter, 9;4 is the optimal
t-th parameter for Task A, and A controls the reg-
ularization strength, i.e. the higher it is, the more
it is important to remember Task A.

5 Confusion matrices

Tables 1 to 5 show the confusion matrices of
the Wh, Naive, Cumulative, Rehearsal, and EWC
models, respectively, on the WH — Y/N setup.
Tables 1 and 7 to 10, instead, show the confu-
sion matrices of the Y/N, Naive, Cumulative, Re-
hearsal, and EWC models, respectively, on the
Y/N — WH setup. In particular, predictions on
these confusion matrices are grouped according
to their category, so that rows represent the ques-
tion type each question belongs to, columns repre-
sent the category each answer belongs to, and cells
show the number of predictions the model obtains
for a particular question type and answer category.

6 Neuron activations

Figures 1 and 2 show the neuron activations on
the penultimate hidden layer of Naive model for
the I) WH — Y/N setup and the model trained
independently on Y/N-q, respectively. All the vi-
sualizations of neuron activations reported in the
paper are obtained by computing the vectors con-
taining the neuron activations of the penultimate
hidden layer of the model during forward propa-
gation and by plotting the resulting vectors trans-
formed into two dimensions through ¢-distributed
Stochastic Neighbor Embedding (t-SNE) (Maaten
and Hinton, 2008).



Wh query_color | query_shape | query_size | query_material | Yes/No
query_color 6752 0 0 0 0
query_shape 0 6702 0 0 0

query_size 0 0 6666 0 0
query_material 0 0 0 6653 0
equal_color 1204 14 2088 3 0
equal_shape 26 1150 2232 2 0
equal_size 0 0 3430 0 0
equal_material 21 34 1440 2037 0

Table 1: Confusion matrix of the model trained independently on Wh-q.

Naive query_color | query_shape | query_size | query_material | Yes/No
query_color 15 0 0 0 6738
query_shape 0 81 0 0 6621

query_size 0 0 0 0 6666
query_material 0 0 0 148 6505
equal_color 0 0 0 0 3309
equal_shape 0 0 0 0 3410
equal_size 0 0 0 0 3430
equal_material 0 0 0 0 3532

Table 2: Confusion matrix of the Naive model on the WH — Y/N setup.

Cumulative query_color | query_shape | query_size | query_material | Yes/No
query_color 6752 0 0 1 0
query_shape 0 6702 0 0 0
query_size 0 0 6665 1 0
query_material 0 0 0 6653 0
equal_color 0 0 0 0 3309
equal_shape 0 0 0 0 3410
equal_size 0 0 0 0 3430
equal_material 0 0 0 0 3532

Table 3: Confusion matrix of the Cumulative model on the WH — Y/N setup.

Rehearsal query_color | query_shape | query_size | query_material | Yes/No
query_color 6743 1 8 1 0
query_shape 0 6702 0 0 0

query_size 0 0 6664 0 2

query_material 1 0 1 6651 0
equal_color 0 0 0 0 3309
equal_shape 0 0 0 0 3410

equal_size 0 0 0 0 3430

equal_material 0 0 0 0 3532

Table 4: Confusion matrix of the best Rehearsal model on the WH — Y/N setup.




EWC query_color | query_shape | query_size | query_material | Yes/No
query_color 6715 0 0 1 37
query_shape 0 5479 0 0 1223
query_size 0 0 0 0 6657
query_material 0 0 0 1337 5316
equal_color 0 0 0 0 3309
equal_shape 0 2 0 0 3408
equal_size 0 0 1 0 3429
equal_material 0 0 0 0 3532

Table 5: Confusion matrix of the best EWC model on the WH — Y/N setup.

Y/N query_color | query_shape | query_size | query_material | Yes/No
query_color 0 0 0 0 6753
query_shape 0 0 0 0 6753

query_size 0 0 0 0 6666
query_material 0 0 0 0 6653
equal_color 0 0 0 0 3309
equal_shape 0 0 0 0 3410
equal_size 0 0 0 0 3430
equal_material 0 0 0 0 3532

Table 6: Confusion matrix of the model trained independently on Y/N-q.

Naive query_color | query_shape | query_size | query_material | Yes/No
query_color 6753 0 0 0 0
query_shape 0 6701 1 0 0
query_size 0 0 6666 0 0

query_material 1 0 1 6651 0
equal_color 2732 38 229 310 0
equal_shape 1317 1144 346 603 0

equal_size 1330 16 1559 525 0
equal_material 1297 0 30 2205 0

Table 7: Confusion matrix of the Naive model on the Y/N — WH setup.

Cumulative query_color | query_shape | query_size | query_material | Yes/No
query_color 6753 0 0 0 0
query_shape 1 6701 0 0 0
query_size 0 0 6666 0 0
query_material 0 0 0 6653 0
equal_color 0 0 0 0 3309
equal_shape 0 0 0 0 3410
equal_size 0 0 0 0 3430
equal_material 0 0 0 0 3532

Table 8: Confusion matrix of the Cumulative model on the Y/N — WH setup.




Rehearsal query_color | query_shape | query_size | query_material | Yes/No
query_color 6752 0 1 0 0
query_shape 0 6702 0 0 0

query_size 0 0 6666 0 0

query_material 1 0 1 6651 0
equal_color 0 0 0 0 3309
equal_shape 1 0 0 0 3409

equal_size 0 0 1 0 3429

equal_material 0 0 0 0 3532

Table 9: Confusion matrix of the best Rehearsal model on the Y/N — WH setup.

EWC query_color | query_shape | query_size | query_material | Yes/No

query_color 6748 4 0 1 0
query_shape 0 6701 1 0 0
query_size 0 0 6666 0 0
query_material 1 0 0 6652 0
equal_color 3110 9 17 173 0
equal_shape 801 1214 69 1326 0
equal_size 542 35 35 1674 2
equal_material 464 2 1 3065 0

Table 10: Confusion matrix of the best EWC model on the Y/N — WH setup.
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Figure 1: Analysis of the neuron activations on the Figure 2: Analysis of the neuron activations on the
penultimate hidden layer of the Naive model for the I) penultimate hidden layer of the model trained

WH — Y/N setup. independently on Y/N-q.
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