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This shouldn’t come as a surprise: our data is biased
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Our focus: stereotypes in language modeling (Lu et al., 2018)

m f

Training data counts stereotype
are visible as

likelihoods under a m | He is a good doctor.  He is a good nurse.
pronoun

language model: f | She is a good doctor. She is a good nurse.
The solution: e For every sentence with she/he:
Counterfactual e.g., “She is a nurse.”
Data g add that sentence with he/she for training:
Augmentation e.g., “He is a nurse.”
(Lu et al., 2018) ,9 Now they should yield a balanced model!



e Sebastian J. Mielke
(' Follow ) ~
@sjmielke .

Reading #NLProc papers in the NYC
subway, thinking about the #Benderrule @3
—

THERE 1S NNLY

ONE <77 AND

WE ARE ONLY
N THAL =7

12:12 PM - 19 Jun 2019

wie: PTG TOHE

(&) o (WARTS




“Agreement” or “what if: German”

stereotype
m f

m | Er ist ein guter Arzt. Er ist ein guter Krankenpfleger.
pronoun

f | Sieist eine gute Arztin. Sie ist eine gute Krankenpflegerin.



“Agreement” or “what if: German”

stereotype
m f

m | Erist ein guter Arzt. Er ist ein guter Krankenpfleger.
pronoun

f | Sieist eine gute Arztin. Sie ist eine gute Krankenpflegerin.



“Agreement” or “what if: German”

stereotype
m f

m | Er ist ein guter Arzt. Er ist ein guter Krankenpfleger.
pronoun

f | Sieist eine gute Arztin. Sie ist eine gute Krankenpflegerin.



“Agreement” or “what if: German”

stereotype
m f

m | Er ist ein guter Arzt. Er ist ein guter Krankenpfleger.
pronoun

f | Sieist eine gute Arztin. Sie ist eine gute Krankenpflegerin.



“Agreement” or “what if: German”

stereotype
m f

m | Er ist ein guter Arzt. Er ist ein guter Krankenpfleger.
pronoun

f | Sieist eine gute Arztin. Sie ist eine gute Krankenpflegerin.

So, uh, can we just... change all words’ grammatical gender?



“Agreement” or “what if: German”

stereotype
m f

m | Er ist ein guter Arzt. Er ist ein guter Krankenpfleger.
pronoun

f | Sieist eine gute Arztin. Sie ist eine gute Krankenpflegerin.

So, uh, can we just... change all words’ grammatical gender?

Example: Der Arzt sitzt auf einem Stuhl (The male doctor sits on a chair)



“Agreement” or “what if: German”

stereotype
m f

m | Er ist ein guter Arzt. Er ist ein guter Krankenpfleger.
pronoun

f | Sieist eine gute Arztin. Sie ist eine gute Krankenpflegerin.

So, uh, can we just... change all words’ grammatical gender?

Example: Der Arzt sitzt auf einem Stuhl (The male doctor sits on a chair)

Swap all: Die Arztin sitzt auf einer Stuhl



“Agreement” or “what if: German”

stereotype
m f

m | Er ist ein guter Arzt. Er ist ein guter Krankenpfleger.
pronoun

f | Sieist eine gute Arztin. Sie ist eine gute Krankenpflegerin.

So, uh, can we just... change all words’ grammatical gender?

Example: Der Arzt sitzt auf einem Stuhl (The male doctor sits on a chair)

Swap all: Die Arztin sitzt auf eines=Stuhl (The female doctor sits on a... what?)

No, what we need is...
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Recap: what is a Markov Random Field (Koller and Friedman, 2009)?

Model p(x, y,z) by decomposing into factors (H)!
Every factor gives a score to certain assignments:

B(x=2y=1)=0.42
B(y=1)=13
HBiz=1)=-1

Add up all factors to obtain global score:
score(x =2,y =1,z =4) =
B(x=2,y=1)+E(y=1)+H(z=4)

Get p by global normalization (easy in trees):
p(x=2,y=1,2=4) <
expscore(x =2,y =1,z =4)
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We manually annotated over 100 sentences for each language and checked performance:

Tag Form

P R F1 Acc Acc

Hebrew: hardcoded factors 89.04 40.12 55.32 86.88 83.63
Hebrew: linear factors 87.07 62.35 72.66 90.5 86.75
Hebrew: neural factors 87.18 62.96 73.12 90.62 86.25

Spanish: hardcoded factors 96.97 51.45 67.23 90.21 86.32
Spanish: linear factors 92.74 73.95 82.29 93.79 89.52
Spanish: neural factors 95.34 72.35 82.27 93.91 89.65
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Conclusion

1. As so often, things that are easy in English...
...become surprisingly hard in other languages.

2. 0ld-school probabilistic models often work well enough™

3. And, always, careful with your training data, Eugene!
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