Counterfactual Data Augmentation for Mitigating Gender Stereotypes in Languages with Rich Morphology

ACL 2019

Ran Zmigrod, Sebastian J. Mielke, Hanna Wallach, Ryan Cotterell

University of Cambridge // Johns Hopkins University // Microsoft Research rz279@cam.ac.uk sjmielke@jhu.edu wallach@microsoft.com rdc42@cam.ac.uk

Twitter: @RanZmigrod - paper and thread pinned! // @sjmielke

Coreference resolution systems are biased:

Even though the doctor reassured the nurse, ${\it she}$ was worried.

Coreference resolution systems are biased:

Even though the doctor reassured the nurse, **she** was worried.

Coreference resolution systems are biased:

Even though the doctor reassured the nurse, she was worried.

Coreference resolution systems are biased:

Even though the doctor reassured the nurse, **she** was worried.

Both are possible...

Coreference resolution systems are biased:

Even though the doctor reassured the nurse, **she** was worried.

Both are possible... but systems prefer nurse! (Rudinger et al., 2018; Zhao et al., 2018)

Coreference resolution systems are biased:

Even though the doctor reassured the nurse, **she** was worried.

Both are possible... but systems prefer nurse! (Rudinger et al., 2018; Zhao et al., 2018)

Word embeddings carry biases:

This shouldn't come as a surprise: our data is biased

Training data counts
are visible as
likelihoods under a
language model:

		stereotype	
		m	f
pronoun	m	He is a good doctor.	He is a good nurse.
pronoun	f	She is a good doctor.	She is a good nurse.

Training data counts are visible as likelihoods under a language model:

		stereotype	
		m f	
pronoun	m	He is a good doctor.	He is a good nurse.
pronoun	f	She is a good doctor.	She is a good nurse.

The solution:
Counterfactual
Data
Augmentation
(Lu et al., 2018)

Training data counts
are visible as
likelihoods under a
language model:

		stereotype	
		m	f
pronoun	m	He is a good doctor.	He is a good nurse.
pronoun	f	She is a good doctor.	She is a good nurse.

The solution:
Counterfactual
Data
Augmentation
(Lu et al., 2018)

For every sentence with **she/he**: e.g., "She is a nurse."

Training data counts
are visible as
likelihoods under a
language model:

		stereotype	
		m	f
pronoun	m	He is a good doctor.	He is a good nurse.
pronoun	f	She is a good doctor.	She is a good nurse.

The solution:
Counterfactual
Data
Augmentation
(Lu et al., 2018)

For every sentence with **she/he**:

e.g., "She is a nurse."

add that sentence with **he/she** for training:

e.g., "He is a nurse."

Training data counts
are visible as
likelihoods under a
language model:

		stereotype	
		m f	
pronoun	m	He is a good doctor.	He is a good nurse.
pronoun	f	She is a good doctor.	She is a good nurse.

The solution:
Counterfactual
Data
Augmentation
(Lu et al., 2018)

For every sentence with **she/he**:

e.g., "She is a nurse."

add that sentence with **he/she** for training:

e.g., "He is a nurse."

Now they should yield a balanced model!

Follow

Reading #NLProc papers in the NYC subway, thinking about the #Benderrule 🙃

12:12 PM - 19 Jun 2019

		stereotype m f		
pronoun	m	Er ist ein guter Arzt.	Er ist ein guter Krankenpfleger.	
pronoun	f	Sie ist eine gute Ärztin.	Sie ist eine gute Krankenpflegerin.	

		stereotype m f		
propoun	m	Er ist ein guter Arzt.	Er ist ein guter Krankenpfleger.	
pronoun	f	Sie ist eine gute Ärztin.	Sie ist eine gute Krankenpflegerin.	

		stereotype m f		
pronoun	m	Er ist ein guter Arzt.	Er ist ein guter Krankenpfleger.	
pronoun	f	Sie ist eine gute Ärztin.	Sie ist eine gute Krankenpflegerin.	

		stereotype	
		m	f
pronoun	m	Er ist ein guter Arzt.	Er ist ein guter Krankenpfleger.
	f	Sie ist eine gute Ärztin.	Sie ist eine gute Krankenpflegerin.

		stereotype	
		m	f
pronoun	m	Er ist ein guter Arzt.	Er ist ein guter Krankenpfleger.
	f	Sie ist eine gute Ärztin.	Sie ist eine gute Krankenpflegerin.

So, uh, can we just... change all words' grammatical gender?

		stereotype	
		m	f
pronoun	m	Er ist ein guter Arzt.	Er ist ein guter Krankenpfleger.
	f	Sie ist eine gute Ärztin.	Sie ist eine gute Krankenpflegerin.

So, uh, can we just... change all words' grammatical gender?

Example: Der Arzt sitzt auf einem Stuhl (*The male doctor sits on a chair*)

		stereotype	
		m	f
pronoun	m	Er ist ein guter Arzt.	Er ist ein guter Krankenpfleger.
	f	Sie ist eine gute Ärztin.	Sie ist eine gute Krankenpflegerin.

So, uh, can we just... change all words' grammatical gender?

Example: Der Arzt sitzt auf einem Stuhl (*The male doctor sits on a chair*)

Swap all: Die Ärztin sitzt auf einer Stuhl

		stereotype	
		m	f
pronoun	m	Er ist ein guter Arzt.	Er ist ein guter Krankenpfleger.
	f	Sie ist eine gute Ärztin.	Sie ist eine gute Krankenpflegerin.

So, uh, can we just... change all words' grammatical gender?

Example: Der Arzt sitzt auf einem Stuhl (*The male doctor sits on a chair*)

Swap all: Die Ärztin sitzt auf einer Stuhl (The female doctor sits on a... what?)

No, what we need is...

Only words "connected" in the dependency parse should change!

Build a MRF over morphological tags along the dependency parse! $\widehat{\mathbb{Q}}$

Model p(x, y, z) by decomposing into **factors** (\square)!

Model p(x, y, z) by decomposing into **factors** (\square)!

$$(x = 2, y = 1) = 0.42$$

$$(y = 1) = 1.3$$

$$\blacksquare (z=1) = -1$$

Model p(x, y, z) by decomposing into factors (\square)! Every factor gives a score to certain assignments:

$$(x = 2, y = 1) = 0.42$$

$$(y = 1) = 1.3$$

$$(z = 1) = -1$$

Add up all factors to obtain global score:

$$score(x = 2, y = 1, z = 4) =$$

$$(x = 2, y = 1) + (y = 1) + (z = 4)$$

Model p(x, y, z) by decomposing into factors (\square)! Every factor gives a score to certain assignments:

$$(x = 2, y = 1) = 0.42$$

$$(y = 1) = 1.3$$

$$\square(z=1)=-1$$

Add up all factors to obtain global score:

$$score(x = 2, y = 1, z = 4) =$$
 $(x = 2, y = 1) + (y = 1) + (z = 4)$

Get *p* by global normalization (easy in trees):

$$p(x = 2, y = 1, z = 4) \propto$$

exp score(x = 2, y = 1, z = 4)

Only words "connected" in the dependency parse should change!

Build a MRF over morphological tags along the dependency parse! $\widehat{\mathbb{Q}}$

Syntax to the rescue: use dependency parses

Only words "connected" in the dependency parse should change!

Syntax to the rescue: use dependency parses

Only words "connected" in the dependency parse should change!

Syntax to the rescue: use dependency parses

Only words "connected" in the dependency parse should change!

Get the new sentence by performing **morphological reinflection** where tags changes:

(this is a reasonably well-working procedure, established in three shared tasks at SIGMORPHON and CoNLL)

Der	gute	Arzt	sitzt	auf	einem	Stuhl
F; SG; NOM	F; SG; NOM	F; SG; NOM		_	M ; $\frac{SG}{DAT}$	M; SG; DAT

Get the new sentence by performing **morphological reinflection** where tags changes:

(this is a reasonably well-working procedure, established in three shared tasks at SIGMORPHON and CONLL)

Get the new sentence by performing **morphological reinflection** where tags changes:

(this is a reasonably well-working procedure, established in three shared tasks at SIGMORPHON and CONLL)

Get the new sentence by performing **morphological reinflection** where tags changes:

(this is a reasonably well-working procedure, established in three shared tasks at SIGMORPHON and CONLL)

	Tag			Form
P	R	<i>F</i> 1	Acc	Acc

	Tag				Form
	P	R	F1	Acc	Acc
Hebrew: hardcoded factors	89.04	40.12	55.32	86.88	83.63

	Tag				Form
	P	R	<i>F</i> 1	Acc	Acc
Hebrew: hardcoded factors	89.04	40.12	55.32	86.88	83.63
Hebrew: linear factors	87.07	62.35	72.66	90.5	86.75

	Tag				Form
	P	R	F1	Acc	Acc
Hebrew: hardcoded factors	89.04	40.12	55.32	86.88	83.63
Hebrew: linear factors	87.07	62.35	72.66	90.5	86.75
Hebrew: neural factors	87.18	62.96	73.12	90.62	86.25

	Tag				Form
	P	R	F 1	Acc	Acc
Hebrew: hardcoded factors	89.04	40.12	55.32	86.88	83.63
Hebrew: linear factors	87.07	62.35	72.66	90.5	86.75
Hebrew: neural factors	87.18	62.96	73.12	90.62	86.25
Spanish: hardcoded factors	96.97	51.45	67.23	90.21	86.32
Spanish: linear factors	92.74	73.95	82.29	93.79	89.52
Spanish: neural factors	95.34	72.35	82.27	93.91	89.65

Bias

$$\log \frac{\sum_{\mathbf{x} \in \Sigma^*} p(\text{Der gute Arzt } \mathbf{x})}{\sum_{\mathbf{x} \in \Sigma^*} p(\text{Die gute Ärztin } \mathbf{x})} \quad \frac{\mathbf{m}}{\mathbf{f}}$$

1. As so often, things that are easy in English... ...become surprisingly hard in other languages.

- 1. As so often, things that are easy in English...
 - ...become surprisingly hard in other languages.
- 2. Old-school probabilistic models often work well enoughTM

- 1. As so often, things that are easy in English...
 - ...become surprisingly hard in other languages.
- 2. Old-school probabilistic models often work well enoughTM
- 3. And, always, careful with your training data, Eugene!

Counterfactual Data Augmentation for Mitigating Gender Stereotypes in Languages with Rich Morphology

ACL 2019

Ran Zmigrod, Sebastian J. Mielke, Hanna Wallach, Ryan Cotterell

University of Cambridge // Johns Hopkins University // Microsoft Research rz279@cam.ac.uk sjmielke@jhu.edu wallach@microsoft.com rdc42@cam.ac.uk

Twitter: @RanZmigrod - paper and thread pinned! // @sjmielke