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Abstract

We present the e-commerce dataset informa-
tion as well as gazetteers used in our model.
The details of experiments are further dis-
cussed.

1 E-commerce Dataset

The E-commerce dataset is created by crawling
and annotating product titles from the Taobao
which is a Chinese e-commerce site with various
types of products. Entity types including the Prod-
uct name and the Brand name. Details of this
dataset are shown in 1 and in 2.

2 Gazetteers

For general gazetteers, we collect gazetteers
of 4 categories (PER, GPE, ORG, LOC).
Each category has 3 gazetteers with different
sizes, selected from multiple sources including
Sougou (https://pinyin.sogou.com/dict/), HanLP
(https://github.com/hankcs/HanLLP) and Hankcs
(http://www.hankcs.com/nlp/corpus). Sougou is a
popular Chinese IME with a crowd source plat-
form containing a huge number of gazetteers.
HanLP is a widely used open-source Chinese NLP
toolkit with many lexicons provided. Hankcs pro-
vides collection of lexicons of a ten million level
volume.

For domain-specific gazetteers, We collect a list
of person names from Weibo which is a Chines
microblog site. The gazetteers in the e-commerce
domain are obtained by crawled product cata-
logues from Taobao.

3 Experimental Details

3.1 Hyper-parameter tuning

As shown in Table 3, parameters of NCRFPP are
tuned on the OntoNotes development set by grid-
search without gazetteers. We setup our model

Entity Number | Product | Brand
Train 10479 1630
Test 1345 222
Dev 1340 200

Table 1: The Entity Information

Utterances | Tokens | Avg. Tokens
Train | 3989 2956 29.9
Test | 498 1706 29.5
Dev | 500 1685 29.8

Table 2: Statistics of Dataset

and compared models with the same configura-
tion. The parameters of graph embedding are
tuned on the OntoNotes development set by grid-
search with one ORG gazetteer added.

3.2 Models for comparison

Wang et al. (2018) propose detailed description
for constructing the following methods. We fol-
low the same constructing method as them. These
methods are the same as (Qi et al., 2019; Chiu and
Nichols, 2016).

N-gram Given the input sentence S with char-
acters cj...cy,, the feature f., of ¢; is com-
posed of 0-1 vectors (i.e., each entry of such
vectors is either 0 or 1) for forward N-grams
segments (€.g., CiCi4+1,CiCi+1Ci+2,...) and 0-1
vectors for backward N-grams segments (e.g.,
CiCi—1,CiCi—1Ci—2,...). The 0-1 vector indicates
whether the segment can be found in gazetteers of
a certain category (PER, GPE, ORG, LOC). For ex-
ample, if c;c;41 can be found in a PER gazetteer
and a ORG gazetteer, its 0-1 vector should be

Parameter Value || Parameter Value
Char emb size 200 Learning rate | 0.001
Bigram emb Size | 200 Batch size 10
LSTM hidden 600 Graph state 300
LSTM layers 2 T steps 2

Table 3: Hyper-parameter values



[1,0,1,0]. Finally, f., is the concatenation of all
these 0-1 vectors.

PIET Given a sentence X and a gazetteer G,
we first select non-overlapping matches entities in
segment X by maximizing the total number of
matched tokens in X. Then each character x; is
labeled as the gazetteer of the entity which x; be-
longs to. The feature can be further represented in
the format of one-hot encoding or feature embed-
ding.

PDET PIET feature only considers the type of
the entity which a character belongs to. Different
from PIET feature, PDET feature also takes the
position of a character in an entity into account:
If the character is merely a single-character entity,
we add a flag S before the PIET feature. Other-
wise, for the first character of an entity, we add a
flag B before the PIET feature; For the last char-
acter of an entity, we add a flag E before the PIET
feature; For the middle character(s) of an entity,
we add a flag I before the PIET feature. Similar
to PIET feature, PDET feature can also be repre-
sented in the format of one-hot encoding or feature
embedding
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