
Constituent identity is crucial for quality

Only predicting constituent length (1 > 3) rather than type &
length (NP1 > VP3), causes a BLEU drop from 23.8 to 8.2.

Ground-truth syntax yields huge improvements

Conditioning on the ground-truth chunk sequence during inference
dramatically improves BLEU from 23.8 to 41.5, yielding an upper
bound for our approach.

SYNTACTICALLY SUPERVISED TRANSFORMERS
FOR FASTER NEURAL MACHINE TRANSLATION
Nader Akoury, Kalpesh Krishna, Mohit Iyyer

UMass
Amherst

code & data at

github.com/

dojoteef/synst

Cats > sleep > a > lot

Katzen schlafen viel

Cats sleep a lot

Cats sleep > a lot

 > > > Cats sleep a lot

NP1 > VP3 > Cats sleep a lot

autoregressive

non-autoregressive

semi-autoregressive

Latent Transformer

SynST (ours)

SYNST VS. EXISTING SYSTEMS

Each > denotes a single decode step.
Fewer decode steps results in faster
translation, often at the expense of quality.

We present the syntactically
supervised Transformer (SynST),
which achieves faster translation
and higher BLEU than competing
non-autoregressive neural machine
translation models.

TARGET PARSE CHUNKING

S6

DT1

VP3NP3

JJ1 NN1 VBD1 NP2

PRP$1 NNS1the sleepy cat closed

its eyes

k=3: NP3 VP3

k=2: DT1 JJ1 NN1
 VBD1 NP2

During an in-order traversal, if the subtree
rooted at a visited node spans ≤ k tokens,
append it to our chunk sequence.

Model WMT En-De WMT De-En IWSLT En-De WMT En-Fr
BLEU Speedup BLEU Speedup BLEU Speedup BLEU Speedup

Vanilla Transformer
Beam Size = 4 26.87 1.00× 30.73 1.00× 30.00 1.00× 40.22 1.00×
Beam Size = 1 25.82 1.15× 29.83 1.14× 28.66 1.16× 39.41 1.18×

Semi-Autoregressive Transformer
k = 2 22.81 2.05× 26.78 2.04× 25.48 2.03× 36.62 2.14×
k = 4 16.44 3.61× 21.27 3.58× 20.25 3.45× 28.07 3.34×
k = 6 12.55 4.86× 15.23 4.27× 14.02 4.39× 24.63 4.77×

Latent Transformer*
* As reported in (Kaiser et al. 2018) 19.8 3.89× - - - - - -

Syntactically Supervised Transformer
k=6 20.74 4.86× 25.50 5.06× 23.82 3.78× 33.47 5.32×

CONTROLLED EXPERIMENTS

Feed Forward

Add & Norm

Self-Attention

Add & Norm

Self-Attention

Add & Norm

N⨉ N⨉

Source Attention

Add & Norm

Self-Attention

Add & Norm

M⨉

Source Attention

Add & Norm

Autoregressive
Parse Decoder

Single-Pass
Token Decoder

Encoder

Feed Forward

Add & Norm

Feed Forward

Add & Norm

Positional

Encoding

Positional

Encoding

Positional

Encoding

Input

Embedding

Output

Embedding

Parse

Embedding

t4
NP1	<MASK>	VP3	<MASK>	<MASK>	<MASK>Katzen schlafen viel <SOS>	NP1	VP3

t2t1 t3

Linear

Softmax

NP1	VP3	<EOS>

Linear

Softmax

NP1 Cats VP3 sleep a lot

1. Encode source
sentence.

2. Produce shallow
chunking of target
sentence from its

constituency parse.

3. Autoregressively
predict target chunks.

4. Non-autoregressively
predict target tokens.

During inference, the
model uses its own
chunk predictions.

TRAINING SYNST

ANALYSIS ON IWSLT DEV SET

How much does SynST rely on syntax?

Predicted Parse Predicted Parse Parsed Prediction Parsed Prediction
vs vs vs vs

Gold Parse
(trained separately)

Gold Parse Gold Parse Predicted Parse

F1 65.48 69.64 79.16 89.90

Exact Match 4.23% 5.24% 5.94% 43.10%

Source: Katzen schlafen viel Target: Cats sleep a lot
Predicted Parse: NP1 > VP2 Prediction: Cats sleep lots
Gold Parse: NP1 > VP3 Parsed Prediction: NP1 > VP2

Parsed prediction closely matches predicted parse, though
there exists room for improvement for parse prediction.

Randomly sampling
possible chunk
sequences during
training by varying k
leads to a large BLEU
improvement (+1.5) with
minimal impact to
speedup (drop from 3.8×
to 3.1×). Improving parse
prediction is an avenue
for future research.

Future work:
dynamic vs fixed k

SynST’s bottleneck
is its parse decoder

A one-layer parse decoder is ~3×
faster than a 5-layer version, with
only a ~0.5 BLEU drop.

https://github.com/dojoteef/synst
https://github.com/dojoteef/synst

