
Constituent identity is crucial for quality

Only predicting constituent length (1 > 3) rather than type & 
length (NP1 > VP3), causes a BLEU drop from 23.8 to 8.2.

Ground-truth syntax yields huge improvements

Conditioning on the ground-truth chunk sequence during inference 
dramatically improves BLEU from 23.8 to 41.5, yielding an upper 
bound for our approach.
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SYNST VS. EXISTING SYSTEMS

Each > denotes a single decode step. 
Fewer decode steps results in faster 
translation, often at the expense of quality.

We present the syntactically 
supervised Transformer (SynST), 
which achieves faster translation 
and higher BLEU than competing 
non-autoregressive neural machine 
translation models.

TARGET PARSE CHUNKING
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During an in-order traversal, if the subtree 
rooted at a visited node spans ≤ k tokens, 
append it to our chunk sequence.

Model WMT En-De WMT De-En IWSLT En-De WMT En-Fr
BLEU Speedup BLEU Speedup BLEU Speedup BLEU Speedup

Vanilla Transformer
Beam Size = 4 26.87 1.00× 30.73 1.00× 30.00 1.00× 40.22 1.00×
Beam Size = 1 25.82 1.15× 29.83 1.14× 28.66 1.16× 39.41 1.18×

Semi-Autoregressive Transformer
k = 2 22.81 2.05× 26.78 2.04× 25.48 2.03× 36.62 2.14×
k = 4 16.44 3.61× 21.27 3.58× 20.25 3.45× 28.07 3.34×
k = 6 12.55 4.86× 15.23 4.27× 14.02 4.39× 24.63 4.77×

Latent Transformer*
* As reported in (Kaiser et al. 2018) 19.8 3.89× - - - - - -

Syntactically Supervised Transformer 
k=6 20.74 4.86× 25.50 5.06× 23.82 3.78× 33.47 5.32×

CONTROLLED EXPERIMENTS
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1. Encode source 
sentence.

2. Produce shallow 
chunking of target 
sentence from its 

constituency parse.

3. Autoregressively 
predict target chunks.

4. Non-autoregressively 
predict target tokens.

During inference, the 
model uses its own 
chunk predictions.

TRAINING SYNST

ANALYSIS ON IWSLT DEV SET

How much does SynST rely on syntax?

Predicted Parse Predicted Parse Parsed Prediction Parsed Prediction
vs vs vs vs

Gold Parse 
(trained separately)

Gold Parse Gold Parse Predicted Parse

F1 65.48 69.64 79.16 89.90

Exact Match 4.23% 5.24% 5.94% 43.10%

Source: Katzen schlafen viel Target: Cats sleep a lot
Predicted Parse: NP1 > VP2 Prediction: Cats sleep lots
Gold Parse: NP1 > VP3 Parsed Prediction: NP1 > VP2

Parsed prediction closely matches predicted parse, though 
there exists room for improvement for parse prediction.

Randomly sampling 
possible chunk 
sequences during 
training by varying k 
leads to a large BLEU 
improvement (+1.5) with 
minimal impact to 
speedup (drop from 3.8× 
to 3.1×). Improving parse 
prediction is an avenue 
for future research.

Future work: 
dynamic vs fixed k

SynST’s bottleneck 
is its parse decoder

A one-layer parse decoder is ~3× 
faster than a 5-layer version, with 
only a ~0.5 BLEU drop.

https://github.com/dojoteef/synst
https://github.com/dojoteef/synst

