

Harvard John A. Paulson School of Engineering and Applied Sciences

Don't Take the Premise for Granted:

Mitigating Artifacts in Natural Language Inference

Yonatan Belinkov*, Adam Poliak*, Stuart Shieber, Benjamin Van Durme, Alexander Rush

July 29, 2019 ACL, Florence

Natural language inference (entailment) Premise: A woman is running in the park with her dog Hypothesis: A woman is sleeping Relation: entailment, neutral, contradiction

Natural language inference (entailment) Premise: A woman is running in the park with her dog Hypothesis: A woman is sleeping Relation: entailment, neutral, contradiction

Natural language inference (entailment) Premise: A woman is running in the park with her dog Hypothesis: A woman is sleeping Relation: entailment, neutral, contradiction

Reading comprehension

"No," he replied, "except that he seems in a great hurry." "That's just it," Jimmy returned promptly. "Did you ever see him hurry unless he was frightened?" Peter confessed that he never had. Q: "Well, he isn't _____ now, yet just look at him go" A: Do, case, confessed, frightened, mean, replied, returned, said, see, thought

[Sources: Hill+ '16, Zhang+ '16]

Natural language inference (entailment) Premise: A woman is running in the park with her dog Hypothesis: A woman is sleeping Relation: entailment, neutral, contradiction

Reading comprehension

"No," he replied, "except that he seems in a great hurry." "That's just it," Jimmy returned promptly. "Did you ever see him hurry unless he was frightened?" Peter confessed that he never had. Q: "Well, he isn't ____ now, yet just look at him go" A: Do, case, confessed, frightened, nean,

replied, returned, said, see, thought

[Sources: Hill+ '16, Zhang+ '16]

Natural language inference (entailment)

Premise: A woman is running in the park with her dog Hypothesis: A woman is sleeping

Relation: entailment. neutral. contradiction

Assumption: Identifying the relationship requires deep language understanding

a great hurry." "That's just it," Jimmy returned promptly. "Did you ever see him hurry unless he was frightened?" Peter confessed that he never had. Q: "Well, he isn't _____ now, yet just look at him go" A: Do, case, confessed, frightened, mean, replied, returned, said, see, thought

[Sources: Hill+ '16, Zhang+ '16]

• Hypothesis-only NLI (Poliak+ '18; Gururangan+ '18; Tsuchia '18)

Hypothesis: A woman is sleeping

• Hypothesis-only NLI (Poliak+ '18; Gururangan+ '18; Tsuchia '18)

Hypothesis: A woman is sleeping

• Hypothesis-only NLI (Poliak+ '18; Gururangan+ '18; Tsuchia '18)

Hypothesis: A woman is sleeping

entailment neutral contradiction

- Hypothesis-only NLI (Poliak+ '18; Gururangan+ '18; Tsuchia '18)
- Reading comprehension (Kaushik & Lipton '18)
- Visual question answering (Zhang+ '16; Kafle & Kanan '16; Goyal+ '17; Agarwal+ '17; *inter alia*)
- Story cloze completion (Schwartz+ '17, Cai+ '17)

Problem:

One-sided biases mean that models may not learn the true relationship between premise and hypothesis

Strategies for dealing with dataset bias

- Construct new datasets (Sharma+ '18)
 - o **\$\$\$**
 - \circ Other bias

Strategies for dealing with dataset bias

- Construct new datasets (Sharma+ '18)
 - o **\$\$\$**
 - \circ Other bias
- Filter "easy" examples (Gururangan+ '18)
 - $\circ~$ Hard to scale
 - \circ May still have biases (see SWAG \rightarrow BERT \rightarrow HellaSWAG)

Strategies for dealing with dataset bias

- Construct new datasets (Sharma+ '18)
 - o **\$\$\$**
 - \circ Other bias
- Filter "easy" examples (Gururangan+ '18)
 - \circ Hard to scale
 - \circ May still have biases (see SWAG \rightarrow BERT \rightarrow HellaSWAG)
- Forgo datasets with known biases
 - \circ Not all bias is bad
 - Biased datasets may have other useful information

Our approach: Design models that facilitate learning less biased representations

• Typical NLI models maximize the discriminative likelihood

 $p_{\theta}(y|P,H)$

• Typical NLI models maximize the discriminative likelihood

• Typical NLI models maximize the discriminative likelihood

 $p_{\theta}(y|P,H)$

- Our key idea: If we generate the premise, it cannot be ignored
- We will maximize the likelihood of generating the premise

p(P|y,H)

• Typical NLI models maximize the discriminative likelihood

 $p_{\theta}(y|P,H)$

- Our key idea: If we generate the premise, it cannot be ignored
- We will maximize the likelihood of generating the premise

Hypothesis: A woman is sleeping Relation: contradiction

Premise: A woman is running in the park with her dog

• Unfortunately, text generation is hard!

Hypothesis: A woman is sleeping Relation: contradiction

Premise: A woman is running in the park with her dog

• Unfortunately, text generation is hard!

Hypothesis: A woman is sleeping Relation: contradiction

Premise: A woman is running in the park with her dog
Premise: A woman sings a song while playing piano
Premise: This woman is laughing at her baby

• Unfortunately, text generation is hard!

- Unfortunately, text generation is hard!
- Instead, rewrite as follows

$$\log p(P|y, H) = \log \frac{p_{\theta}(y|P, H)p(P|H)}{p(y|H)}$$

- Unfortunately, text generation is hard!
- Instead, rewrite as follows

$$\log p(P|y, H) = \log \frac{p_{\theta}(y|P, H)p(P|H)}{p(y|H)}$$

- Assume p(P|H) is constant

- Unfortunately, text generation is hard!
- Instead, rewrite as follows

$$\log p(P|y, H) = \log \frac{p_{\theta}(y|P, H)p(P|H)}{p(y|H)}$$

- Assume p(P|H) is constant
- We have $\log p_{\theta}(y|P,H) \log p(y|H)$

Need to estimate this

Method 1: Auxiliary Hypothesis Classifier

- Learn a new estimator $p_{\phi, \theta}(y|H)$
 - Share the hypothesis-encoder
 - Learn an additional classification layer
 - Multi-task objective function

$$\max_{\theta} L_1(\theta) = \log p_{\theta}(y|P, H) - \alpha \log p_{\phi,\theta}(y|H)$$
$$\max_{\phi} L_2(\phi) = \beta \log p_{\phi,\theta}(y|H)$$

Method 1: Auxiliary Hypothesis Classifier

• Learn a new estimator $p_{\phi, \theta}(y|H)$

Method 1: Auxiliary Hypothesis Classifier

• Learn a new estimator $p_{\phi, \theta}(y|H)$

$$-\log p(y \mid H) = -\log \sum_{P'} p(P' \mid H) p(y \mid P', H)$$
$$= -\log \mathbb{E}_{P'} p(y \mid P', H) \ge -\mathbb{E}_{P'} \log p(y \mid P', H),$$

- Lower bound from Jensen's inequality
- Approximate the expectation with uniform samples P'

$$-\log p(y \mid H) = -\log \sum_{P'} p(P' \mid H) p(y \mid P', H)$$
$$= -\log \mathbb{E}_{P'} p(y \mid P', H) \ge -\mathbb{E}_{P'} \log p(y \mid P', H),$$

- Lower bound from Jensen's inequality
- Approximate the expectation with uniform samples P'
- Multi-task objective function

$$\max_{\theta} L_1(\theta) = (1 - \alpha) \log p_{\theta}(y|P, H) - \alpha \log p_{\phi,\theta}(y|P', H)$$
$$\max_{\phi} L_2(\phi) = \beta \log p_{\phi,\theta}(y|P', H)$$

What is this good for?

What is this good for?

Are less biased models more transferable?

A Toy Example

Synthetic dataset (unbiased) $(a, a) \rightarrow TRUE$ $(a, b) \rightarrow FALSE$ $(b, b) \rightarrow TRUE$ $(b, a) \rightarrow FALSE$

A Toy Example

Synthetic dataset (unbiased) $(a, a) \rightarrow TRUE$ $(a, b) \rightarrow FALSE$ $(b, b) \rightarrow TRUE$ $(b, a) \rightarrow FALSE$

Synthetic dataset (biased) $(a, ac) \rightarrow \text{TRUE}$ $(a, b) \rightarrow \text{FALSE}$ $(b, bc) \rightarrow \text{TRUE}$ $(b, a) \rightarrow \text{FALSE}$

A Toy Example

Synthetic dataset (unbiased) $(a, a) \rightarrow TRUE$ $(a, b) \rightarrow FALSE$ $(b, b) \rightarrow TRUE$ $(b, a) \rightarrow FALSE$

Synthetic dataset (biased) $(a, ac) \rightarrow \text{TRUE}$ $(a, b) \rightarrow \text{FALSE}$ $(b, bc) \rightarrow \text{TRUE}$ $(b, a) \rightarrow \text{FALSE}$

Models transfer well on synthetic data

	α							
β	0.1	0.25	0.5	1	2.5	5		
0.1	50	50	50	50	50	50		
0.5	50	50	50	50	50	50		
1	50	50	50	50	50	50		
1.5	50	50	50	50	50	100		
2	50	50	50	50	100	100		
2.5	50	50	100	75	100	100		
3	50	100	100	100	100	100		
3.5	100	100	100	100	100	100		
4	100	100	100	100	100	100		
5	100	100	100	100	100	100		
10	100	100	100	100	100	100		
20	100	100	100	100	100	100		

Method 1: Auxiliary Hypothesis Classifier

Models transfer well on synthetic data

		α							
β	0.1	0.25	0.5	0.75	1				
0.1	50	50	50	50	50				
0.5	50	50	50	50	50				
1	50	50	50	50	50				
1.5	50	50	50	50	50				
2	50	50	50	50	50				
2.5	50	50	50	50	50				
3	50	50	100	50	50				
3.5	50	50	100	50	50				
4	50	100	100	50	50				
5	50	50	100	100	50*				
10	75	100	100	100	50^{*}				
20	100	100	100	50*	50*				

Method 2: Negative Sampling

Do the models transfer well on standard NLI datasets?

Degradation in domain

Transfer to other datasets

Transfer to other datasets

Baseline Method 2: Negative Sampling

Q: Does it matter what kind of bias we have? A: Yes! Different biases than training data \rightarrow

- Usually, more improvement from our methods
- But not always

Q: Does it matter what kind of bias we have? A: Yes! Different biases than training data \rightarrow

- Usually, more improvement from our methods
- But not always
- **Q:** Do stronger hyper-parameters help?
- A: More emphasis on the auxiliary objective \rightarrow
 - More transferability, but worse in-domain performance

Q: Does it matter what kind of bias we have? A: Yes! Different biases than training data \rightarrow

- Usually, more improvement from our methods
- But not always
- **Q:** Do stronger hyper-parameters help?
- A: More emphasis on the auxiliary objective \rightarrow
 - More transferability, but worse in-domain performance
- Q: What if we get a bit of out-of-domain training data?
- A: Pre-training with our methods still helps
 - Especially with datasets with different biases

More Analysis

Q: Are biases really removed from the hidden representations?

A: Some, but not all

• See our recent work: On Adversarial Removal of Hypothesis-only Bias in NLI, *SEM 2019

More Analysis

- Q: Are biases really removed from the hidden representations?
- A: Some, but not all
- See our recent work: On Adversarial Removal of Hypothesis-only Bias in NLI, *SEM 2019
- Q: Does this approach work for other tasks?
- A: Seems to work for VQA (Ramakrishnan+ '18)
- A: But there are shortcomings
- See our recent work: Adversarial Regularization for VQA: Strengths, Shortcomings, and Side Effects, SiVL 2019

Contributions

- Our approach may aid with one-sided biases in NLI and other tasks
 - $\circ~$ Reduces the amount of bias
 - Improves transferability

Acknowledgements:

Contributions

- Our approach may aid with one-sided biases in NLI and other tasks
 - Reduces the amount of bias
 - Improves transferability
- Our analysis shows that the methods should be handled with care
 - Not all bias may be removed
 - Some other information may also be removed
 - The goal matters: bias may sometimes be helpful

Acknowledgements:

