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6000+ languages
 
≈ 1% with annotation

Wikipedia:Jroehl 2

https://commons.wikimedia.org/wiki/User:Jroehl


Emergency Response Named Entity Recognition
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Annotation Projection for Transfer

kailangan namin ng mas maraming dugo sa Pagasanjan .

we need more blood in Pgasanjan ..

O    O      O        O   O    B-LOC   O

Yarowsky et al. (2001)

Tagalog

English
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Representation Projection for Transfer

Mis-matched
Model

kailangan namin ng mas maraming dugo sa Pagasanjan .

language independent 
representation

Cross-lingual word 
embeddings 
(Lample et al., 2018)

Ideal: source-target similar in 
word order, script, syntax
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Direct Transfer for NER

English 

kailangan namin ng mas 
maraming dugo sa Pagasanjan.

kailangan namin ng mas maraming 
dugo sa Pagasanjan.

kailangan namin ng mas 
maraming dugo sa Pagasanjan.

Input: Unlabelled sentences in the target language encoded 
with cross-lingual embeddings

Arabic Afrikaans 

Output: Labelled sentences in the target language

Pre-trained 
NER source 

models

O O O O B-LOC OO  O B-PER O O OO  B-PER  O   O  B-LOC O
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Direct Transfer Results (NER F1 score, WikiANN)

unsuprising
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Direct Transfer Results (NER F1 score, WikiANN)

unrelated
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Direct Transfer Results (NER F1 score, WikiANN)

asymmetry
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Voting & English are often poor!
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General findings
● Transfer strongest within 

language family 
(Germanic, Roman, 
Slavic-Cyr, 
Slavic-Latin)

● Asymmetry between use 
as source vs target 
language (Slavic-Cyr, 
Greek/Turkish/...)

● But lots of odd results & 
overall highly noisy

 

 

 

 

 

 



Problem Statement

Input:

● N black-box source models
● Unlabelled data in target language
● Little or no labelled data (few shot and zero shot)

Output:

● Good predictions in the target language
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Model 1: Few Shot Ranking and Retraining (RaRe)

13

100 gold sents.
In Tagalog Source Model EN

Source Model AR

Source Model VI F1VI 

Source model qualities

F1EN

F1AR 



Model 1: Few Shot Ranking and Retraining (RaRe)
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20k unlabelled 
sents in Tagalog Source Model EN

Source Model AR

Source Model VI

N training sets in Tagalog

Dataset AR 

Dataset EN 

Dataset VI 



Model 1: Few Shot Ranking and Retraining (RaRe)
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Final training set, a mixture of distilled knowledge

l ∈ source langs. 

Dataset l g(F1l) Training Set



Model 1: Few Shot Ranking and Retraining (RaRe)

1. Train an NER model on the mixture datasets.
2. Fine-tune on 100 gold samples.

Zero-shot variant: uniform sampling without fine-tuning 
(RaReuns)
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Lample et al., (2016) 

Our method is independent of 
model choice.
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Hierarchical BiLSTM-CRF as model



Model 2: Zero Shot Transfer (BEA)

What if no gold labels are available?

1. Treat gold labels Z as hidden variables
2. Estimate Z that best explains all the observed predictions
3. Re-estimate the quality of source models

Inspired by Kim and Ghahramani (2012)
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Model 2: Zero Shot Transfer (BEA)

Predicted label of instance i 
by model j (observed)
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Model 2: Zero Shot Transfer (BEA)

True label of 
instance i 
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Model 2: Zero Shot Transfer (BEA)

Model j’s confusion matrix 
between True and predicted labels.
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Model 2: Zero Shot Transfer (BEA)

Categorical 
Distribution
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Model 2: Zero Shot Transfer (BEA)

Uninformative 
Dirichlet Priors
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Model 2: Zero Shot Transfer (BEA)
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Find Z to maximises 
P(Z|Y,𝛼,𝛽), using
variational mean-
field approx.

Warm-start with MV.



Extensions to BEA

1. Spammer removal:
After running BEA, estimate source model qualities and 
remove bottom k, run BEA again (BEAunsx2)

2.  Few shot scenario:
Given 100 gold sentences, estimate source model confusion 
matrices, then run BEA (BEAsup)

3.  Token vs Entity application 25



Benchmark: BWET (Xie et al., 2018)

Single source annotation projection with bilingual 
dictionaries from cross-lingual word embeddings

● Transfer english training data to German, Dutch, and 
Spanish.

● Train a transformer NER on the projected training data.

State-of-the-art on zero-shot NER transfer (orthogonal to this)
26



CoNLL Results (avg F1 over de, nl, es)

Use parallel data, 
dictionary or 
wikipedia

Zero shot

Few shot

High-resource
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CoNLL Results (avg F1 over de, nl, es)

Zero shot

Few shot

High-resource
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CoNLL Results (avg F1 over de, nl, es)

Few shot

High-resource
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Zero shot



CoNLL Results (avg F1 over de, nl, es)

Few shot

High-resource
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Zero shot



WIKIANN NER Datasets (Pan et al., 2017)

● Silver annotations from Wikipedia for 282 languages.
● We picked 41 languages based on availability of bilingual 

dictionaries.
● Created balanced training/dev/test partitions 

(varying size of training according to data availability)
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github.com/afshinrahimi/mmner
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L.O.O. over 41 languages
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Tagalog

Transfer from 40 source languages

L.O.O. over 41 languages
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L.O.O. over 41 languages
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Tamil

Transfer from 40 source languages

L.O.O. over 41 languages



Use fasttext monolingual wiki embeddings mapped to 
English space using Identical Character Strings.
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Word representation: FastText/MUSE

Conneau et al. (2017)



Results: WikiANN
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Supervised: no 
transfer

Low-resource

High-resource



Results: WikiANN
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Low-resource

High-resource

Many low quality 
source models

Zero shot



Results: WikiANN

39

Single source 
(en)

Low-resource

High-resource

Zero shot



Results: WikiANN
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Bayesian 
ensembling

Low-resource

High-resource

Zero shot



Results: WikiANN
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+spammer 
  removal

Low-resource

High-resource

Zero shot



Results: WikiANN
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MV between
top 3 sources

Low-resource

High-resource

Zero shot

Few shot



Results: WikiANN
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Estimate BEA
confusion & prior from 
annotations

Low-resource

High-resource

Zero shot

Few shot



Results: WikiANN
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Ranking Retraining
Method (using
character info) Low-resource

High-resource

Zero shot

Few shot



Effect of increasing 
#source languages

Methods robust to 
many varying quality 
source languages.

Even better with 
few-shot supervision.
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Takeaways I
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Transfer from multiple source languages 
helps because for many languages we 
don’t know the best source language.

takeaway / noun [uk/aus/nz]: a meal cooked and bought at a shop or restaurant but taken somewhere else...  
Cambridge English Dictionary



Takeaways II
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With multiple source languages, you need to 
estimate their qualities because uniform
 voting doesn’t perform well.

takeaway / noun [uk/aus/nz]: a meal cooked and bought at a shop or restaurant but taken somewhere else...  
Cambridge English Dictionary



Takeaways III
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A small training set in target language 
helps, and can be done cheaply and quickly 
(Garrette and Baldridge, 2013).

takeaway / noun [uk/aus/nz]: a meal cooked and bought at a shop or restaurant but taken somewhere else...  
Cambridge English Dictionary



Thank you!

Datasets 
& code 

github.com/afshinrahimi/mmner



Future Work

● Map all scripts to IPA or Roman alphabet 
(good for shared embeddings and character-level transfer)

■ uroman: Hermjakob et al. (2018)
■ epitran:   Mortensen et al. (2018)

● Can we estimate the quality of source models/languages 
for a specific target language based on language 
characteristics (Littell et al., 2017)? 

● Technique should apply beyond NER to other tasks.
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