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Motivation
• Processing long, complex sentences is hard!

• Children, people with reading disabilities, L2 
learners…

• Sentence level NLP systems:

• Dependency Parsers

• Neural Machine Translation

• Can we automatically break a complex 
sentence into several simple ones while 
preserving its meaning?

Koehn & Knowles, 2017
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The Split and Rephrase Task
• Narayan, Gardent, Cohen & Shimorina, EMNLP 2017

• Dataset, evaluation method, baseline models

• Task definition: complex sentence -> several simple sentences with the same meaning

• Requires (a) identifying independent semantic units (b) rephrasing those units to single 
sentences

Alan Bean served as a crew member of Apollo 12 . 
Alfred Worden was the backup pilot of Apollo 12 . 
Apollo 12 was commanded by David Scott . 
Alan Bean was selected by Nasa in 1963 .

Alan Bean joined NASA in 1963 where he became a member of the Apollo 12 
mission along with Alfred Worden as back up pilot and David Scott as commander .
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This Work

• We show that simple neural models seem to perform very on the 
original benchmark due to memorization of the training set

• We propose a more challenging data split for the task to 
discourage memorization 

• We perform automatic evaluation and error analysis on the new 
benchmark, showing that the task is still far from being solved
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Preliminary Experiments
• ~1M training examples

• “Vanilla” LSTM seq2seq with attention

• Shared vocabulary between the encoder and the decoder

• Simple sentences predicted as a single sequence

• Evaluated using single-sentence, multi-reference BLEU as in Narayan et al. 2017

comp lex sen ten ce

2ple 1 sim ple simsim ple 3
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Preliminary Results

• Our simple seq2seq 
baseline outperform all but 
one of the baselines from 
Narayan et al. 2017

• Their best baselines were 
using the RDF structures as 
additional information

• Do the simple seq2seq 
model really performs so 
well?
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Text Only Text + RDFs



BLEU can be Misleading



BLEU can be Misleading
• In spite of the high BLEU scores, our neural models suffer from:



BLEU can be Misleading
• In spite of the high BLEU scores, our neural models suffer from:
• Missing facts - appeared in the input but not in the output



BLEU can be Misleading
• In spite of the high BLEU scores, our neural models suffer from:
• Missing facts - appeared in the input but not in the output
• Unsupported facts - appeared in the output but not in the input



BLEU can be Misleading
• In spite of the high BLEU scores, our neural models suffer from:
• Missing facts - appeared in the input but not in the output
• Unsupported facts - appeared in the output but not in the input
• Repeated facts - appeared several times in the output
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Searching for the Cause: Dataset Artifacts
• The original dataset included overlap between the training/development/test sets

•When looking at the complex sentences side, there is no overlap

•On the other hand, most of the simple sentences did overlap (~90%)

•Makes memorization very effective - “leakage” from train on the target side

Train 
Complex

Dev 
Complex

Test 
Complex

source Train Simple

Dev 
Simple

Test 
Simple

target
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New Data Split

• To remedy this, we construct a new data split by using the RDF information:

• Ensuring that all RDF relation types appear in the training set (enable generalization)

• Ensuring that no RDF triple (fact) appears in two different sets (reduce memorization)

• The resulting dataset has no overlapping simple sentences

• Has more unknown symbols in dev/test - need better models!

Original Split New Split
unique dev simple sentences in train 90.9% 0.09%
unique test simple sentences in train 89.8% 0%

% dev vocabulary in train
 97.2% 63%
% test vocabulary in train 96.3% 61.7%
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Copy Mechanism
• To help with the increase in unknown words in the harder split, we incorporate a 

copy mechanism

• Gu et al. 2016, See et al. 2017, Merity et al. 2017

• Uses a “copy switch” - feed-forward NN component with a sigmoid-activated 
scalar output 

• Controls the interpolation of the softmax probabilities and the copy probabilities 
over the input tokens in each decoder step

copy  
switch

1 - copy  
switch

attention  
weights (copy)

softmax 
output
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Results - New Split

• Baseline seq2seq models 
completely break (BLEU < 7) on 
the new split

• Copy mechanism helps to 
generalize

• Much lower than the original 
benchmark - memorization was 
crucial for the high BLEU

0
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45

67.5

90

original split new split

seq2seq +copy
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Copying and Attention
No-Copy With-Copy

The copy-enhanced 
models spread the 
attention across the 
input tokens while 
improving results
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Error Analysis
• On the original split the 

models did very well (due to 
memorization) with up to 91% 
correct simple sentences

• On the new benchmark the 
best model got only up to 
20% correct simple 
sentences

• The task is much more 
challenging then previously 
demonstrated
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Conclusions

• Simple neural models seem to perform well due to memorization

• We propose a more challenging data split for the task to discourage this 

• A similar update was proposed by Narayan et al. in parallel to our work 
(WebSplit v1.0)

• We perform automatic evaluation and error analysis on the new benchmarks, 
showing that the task is still far from being solved
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More Broadly
• Creating datasets is hard!

• Think how models can “cheat"

• Create a challenging evaluation environment to capture generalization

• Look for leakage of train to dev/test

• Numbers can be misleading!

• Look at the data

• Look at the model

• Error analysis



Thank You!

Link to code and data is available in the paper :)


