Learning Cross-lingual Distributed Logical Representations for Semantic Parsing

Yanyan Zou and Wei Lu StatNLP Group Singapore University of Technology and Design July 18, 2018

- Background & Motivation
- ✓ Method
- Experiments & Analysis
- ✓ Conclusion

Goal: Map natural languages into semantic representations.

Goal: Map natural languages into semantic representations.

English: what states have no bordering state ?

Goal: Map natural languages into semantic representations.

answer(exclude(state(all), next_to(state(all))))

Goal: Map natural languages into semantic representations.

Joint Representations

Proposed in previous works:

- ✓ Synchronous CFG derivation trees Wong and Mooney (2006, 2007)
- CCG derivation trees

Zettlemoyer and Collins (2005, 2007)

Bayesian tree transducers

Jones, Goldwater and Johnson (2012)

✓ Hybrid Trees

Lu, Ng, Lee, Zettlemoyer (2008)

Input: what states have no bordering states?

Output: answer(exclude(state(all), next_to(state(all))))

Generative Hybrid Tree

Input: what states have no bordering states?

Discriminative Hybrid Tree

Input: what states have no bordering states?

• Neural hybrid tree is an extension of discriminative hybrid tree.

Neural Hybrid Tree

Input: what states have no bordering states?

SINGAPORE UNIVERSITY OF What do we have?

Semantic Parser For English

MARCHNOLOGY AND DESIGN What do we have?

English Sentences

Semantic Trees

Semantic Parser For English

Can we leverage multi-lingual resources to improve the performance of a monolingual semantic parser?

What do we have?

English Sentences

Semantic Trees

Semantic Parser For English

Can we leverage multi-lingual resources to improve the performance of a monolingual semantic parser?

The answer is Yes!!!

Semantic Parser For English

Auxiliary Languages German Indonesian Chinese

We construct a semantics-word co-occurrence matrix $C \in \mathbb{R}^{m \times n}$ based on auxiliary languages and semantic trees.

The singular value decomposition (SVD) is then applied to the cooccurrence matrix, leading to

$$C = U\Sigma V^*$$

We truncate the diagonal matrix Σ and left multiply it with U :

 $R = U\tilde{\Sigma}$

The singular value decomposition (SVD) is then applied to the cooccurrence matrix, leading to

$$C = U\Sigma V^*$$

We truncate the diagonal matrix Σ and left multiply it with U :

$$R = U\tilde{\Sigma}$$

Each row in **R** is a d-dimensional vector, giving a low-dimensional representation for one semantic unit.

The singular value decomposition (SVD) is then applied to the cooccurrence matrix, leading to

$$C = U\Sigma V^*$$

We truncate the diagonal matrix Σ and left multiply it with U :

$$R = U\tilde{\Sigma}$$

Each row in **R** is a d-dimensional vector, giving a low-dimensional representation for one semantic unit.

The learned representations are considered as features for discriminative and neural hybrid tree models.

Data: Multilingual Geoquery

Results without Neural Features

Data: Multilingual Geoquery Baselines: (Lu et al., 2008) (Lu, 2015)

	English	Thai	German	Greek	Chinese	Indonesian	Swedish	Farsi
	Acc. F.	Acc. F.	Acc. F.					
HT-G	76.8 81.0	73.6 76.7	62.1 68.5	69.3 74.6	56.1 58.4	66.4 72.8	61.4 70.5	51.8 58.6
HT-D	86.8 86.8	80.7 80.7	75.7 75.7	79.3 79.3	76.1 76.1	75.0 75.0	79.3 79.3	73.9 73.9

Results without Neural Features

Data: Multilingual Geoquery

Baselines: (Lu et al., 2008) (Lu, 2015)

	English	Thai	German	Greek	Chinese	Indonesian	Swedish	Farsi
	Acc. F.	Acc. F.	Acc. F.					
HT-G	76.8 81.0	73.6 76.7	62.1 68.5	69.3 74.6	56.1 58.4	66.4 72.8	61.4 70.5	51.8 58.6
HT-D	86.8 86.8	80.7 80.7	75.7 75.7	79.3 79.3	76.1 76.1	75.0 75.0	79.3 79.3	73.9 73.9
HT-D (+O)	86.1 86.1	81.1 81.1	73.6 73.6	81.4 81.4	77.9 77.9	79.6 79.6	79.3 79.3	75.7 75.7

Results with Neural Features

Data: Multilingual Geoquery

Baselines: (Lu et al., 2008) (Lu, 2015) (Susanto and Lu, 2017)

	English	Thai	German	Greek	Chinese	Indonesian	Swedish	Farsi
	Acc. F.	Acc. F.	Acc. F.					
HT-G	76.8 81.0	73.6 76.7	62.1 68.5	69.3 74.6	56.1 58.4	66.4 72.8	61.4 70.5	51.8 58.6
HT-D	86.8 86.8	80.7 80.7	75.7 75.7	79.3 79.3	76.1 76.1	75.0 75.0	79.3 79.3	73.9 73.9
HT-D (+O)	86.1 86.1	81.1 81.1	73.6 73.6	81.4 81.4	77.9 77.9	79.6 79.6	79.3 79.3	75.7 75.7
HT-D (NN) J=0	87.9 87.9	82.1 82.1	75.7 75.7	81.1 81.1	76.8 76.8	76.1 76.1	81.1 81.1	75.0 75.0
HT-D (NN) J=1	88.6 88.6	84.6 84.6	76.8 76.8	79.6 79.6	75.4 75.4	78.6 78.6	82.9 82.9	76.1 76.1
HT-D (NN) J=2	90.0 90.0	82.1 82.1	73.9 73.9	80.7 80.7	81.1 81.1	81.8 81.8	83.9 83.9	74.6 74.6

Results with Neural Features

Data: Multilingual Geoquery

Baselines: (Lu et al., 2008) (Lu, 2015) (Susanto and Lu, 2017)

	English	Thai	German	Greek	Chinese	Indonesian	Swedish	Farsi
	Acc. F.	Acc. F.	Acc. F.					
HT-G	76.8 81.0	73.6 76.7	62.1 68.5	69.3 74.6	56.1 58.4	66.4 72.8	61.4 70.5	51.8 58.6
HT-D	86.8 86.8	80.7 80.7	75.7 75.7	79.3 79.3	76.1 76.1	75.0 75.0	79.3 79.3	73.9 73.9
HT-D (+O)	86.1 86.1	81.1 81.1	73.6 73.6	81.4 81.4	77.9 77.9	79.6 79.6	79.3 79.3	75.7 75.7
HT-D (NN) J=0	87.9 87.9	82.1 82.1	75.7 75.7	81.1 81.1	76.8 76.8	76.1 76.1	81.1 81.1	75.0 75.0
HT-D (NN) J=1	88.6 88.6	84.6 84.6	76.8 76.8	79.6 79.6	75.4 75.4	78.6 78.6	82.9 82.9	76.1 76.1
HT-D (NN) J=2	90.0 90.0	82.1 82.1	73.9 73.9	80.7 80.7	81.1 81.1	81.8 81.8	83.9 83.9	74.6 74.6
HT-D (NN+O) J=0	86.1 86.1	83.6 83.6	73.9 73.9	82.1 82.1	77.9 77.9	81.1 81.1	82.1 82.1	74.6 74.6
HT-D (NN+O) J=1	86.1 86.1	86.1 86.1	72.5 72.5	80.4 80.4	81.4 81.4	82.5 82.5	82.5 82.5	75.7 75.7
HT-D (NN+O) J=2	89.6 86.1	84.6 84.6	72.1 72.1	83.2 83.2	82.1 82.1	83.9 83.9	83.6 83.6	76.8 76.8

Results with Neural Features

Data: Multilingual Geoquery

Baselines: (Lu et al., 2008) (Lu, 2015) (Susanto and Lu, 2017)

	English	Thai	German	Greek	Chinese	Indonesian	Swedish	Farsi
	Acc. F.	Acc. F.	Acc. F.					
HT-G	76.8 81.0	73.6 76.7	62.1 68.5	69.3 74.6	56.1 58.4	66.4 72.8	61.4 70.5	51.8 58.6
HT-D	86.8 86.8	80.7 80.7	75.7 75.7	79.3 79.3	76.1 76.1	75.0 75.0	79.3 79.3	73.9 73.9
HT-D (+O)	86.1 86.1	81.1 81.1	73.6 73.6	81.4 81.4	77.9 77.9	79.6 79.6	79.3 79.3	75.7 75.7
	87.9 87.9	001 001	75.7 75.7	011 011	76.0 76.0	76 1 76 1	011 011	75.0 75.0
HT-D (NN) J=0		82.1 82.1		81.1 81.1	76.8 76.8	76.1 76.1	81.1 81.1	75.0 75.0
HT-D (NN) J=1	88.6 88.6	84.6 84.6	76.8 76.8	79.6 79.6	75.4 75.4	78.6 78.6	82.9 82.9	76.1 76.1
HT-D (NN) J=2	90.0 90.0	82.1 82.1	73.9 73.9	80.7 80.7	81.1 81.1	81.8 81.8	83.9 83.9	74.6 74.6
HT-D (NN+O) J=0	86.1 86.1	83.6 83.6	73.9 73.9	82.1 82.1	77.9 77.9	81.1 81.1	82.1 82.1	74.6 74.6
HT-D (NN+O) J=1	86.1 86.1	86.1 86.1	72.5 72.5	80.4 80.4	81.4 81.4	82.5 82.5	82.5 82.5	75.7 75.7
HT-D (NN+O) J=2	89.6 86.1	84.6 84.6	72.1 72.1	83.2 83.2	82.1 82.1	83.9 83.9	83.6 83.6	76.8 76.8

- Semantic units with similar meanings gather together.
- Occasionally, semantic units conveying opposite meanings are grouped together.

Conclusions

✓ Summary

 Presented a novel method to learning distributed representations of semantic units containing cross-lingual information.

Conclusions

✓ Summary

 Presented a novel method to learning distributed representations of semantic units containing cross-lingual information.

Future work

Learn representations and semantic parsers in a joint manner.

Conclusions

✓ Summary

 Presented a novel method to learning distributed representations of semantic units containing cross-lingual information.

Future work

Learn representations and semantic parsers in a joint manner.

 Investigate which languages from auxiliary corpus are the leading sources of performance gains. Code available at: <u>http://statnlp.org/research/sp/</u>

Questions?