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=== Joint Representations

Proposed in previous works:
v Synchronous CFG derivation trees
Wong and Mooney (2006, 2007)
v CCGQG derivation trees
Zettlemoyer and Collins (2005, 2007)
v Bayesian tree transducers
Jones, Goldwater and Johnson (2012)
v Hybrid Trees
Lu, Ng, Lee, Zettlemoyer (2008)
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Output: answer(exclude(state(all), next_to(state(all))))
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=== Discriminative Hybrid Tree
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=== Neural Hybrid Tree

Input: what states have no bordering states?

QUERY : answer (STATE)
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STATE: exclude (STATE, STATE) !
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what states bordering STATE : state (aII)

* Neural hybrid tree is an extension of discriminative hybrid tree.
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=== Neural Hybrid Tree
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=== Neural Hybrid Tree
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== Cross-lingual Representations

We construct a semantics-word co-occurrence matrix (' ¢ R™*"

based on auxiliary languages and semantic trees.

Semantic Trees _ _

Auxiliary Languages I:I‘> () =
German

Indonesian Cm 1
Chinese
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=== Cross-lingual Representations

The singular value decomposition (SVD) is then applied to the co-
occurrence matrix, leading to

C=UXV"

We truncate the diagonal matrix ), and left multiply it with [J :
R=UY%

Each row In R is a d-dimensional vector, giving a
low-dimensional representation for one semantic unit.

The learned representations are considered as features
for discriminative and neural hybrid tree models.
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Data: Multilingual Geoquery

Baselines:

(Lu, 2015)

Acc. :

F

Acc.: F

German

Acc.: F

Acc.: F

Chinese

Acc. i F
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Acc.: F
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Acc. i F

Acc.: F

HT-G
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61.4  70.5
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Baselines:

(Lu, 2015)

: Resu\ts vv|thout Neura\ Features

(+0): models with distributed representations of semantic units.

77.9 i 77.9

79.6 | 79.6

79.3  79.3

...... E.’.‘.Q.l.'.?h...... ...Thai .._..ﬁﬁrman._._ _..Greek ..._.Qh!n?_se.._.....l_n.d.qne.s.l.an_ .....SW?Q!.SD..... .. Farsi
Acc. . F_|Acc. " F |Acc.. F |Acc.. F |Acc.. F |Acc.: F |Acc.i F |Acc.i F
HT-G 76.8 1810 | 736 : 76.7 | 62.1 : 68.5 | 69.3 74.6 | 561 : 58.4 | 66.4 | 72.8 | 61.4 | 70.5 | 51.8 | 58.6
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Data: Multilingual Geoquery
Baselines: (Lu, 2015)
(+0): models with distributed representations of semantic units.

English Thai German Greek Chinese |Indonesian | Swedish Farsi

Acc.: F |Acc.: F |Acc.: F |Acc.: F |Acc.! F |Acc.: F |Acc.: F |Acc.: F
HT-G 768 81.0 | 736  76.7 | 62.1 1 68.5 | 69.3 | 746 | 56.1 . 58.4 | 66.4 : 728 | 61.4 : 705 | 51.8 : 58.6
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HT-D (NN) J=0 |87.9 :87.9 | 821 821|757 757|811 811|768 768|761 761|811 811|750 750
HT-D (NN) J=1 |88.6  88.6 | 84.6 | 846|768 | 76.8 | 79.6  79.6 | 754 | 754 | 78.6  78.6 | 82.9 | 82.9 | 76.1  76.1
HT-D (NN)J=2 [90.0:90.0 | 82.1 : 821 |73.9: 739 80.7:80.7 | 81.1 :81.1[81.8:81.8| 839 :83.9| 746746
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o=l Results with Neural Features

Data: Multilingual Geoquery
Baselines: (Lu, 2015)
(+0): models with distributed representations of semantic units.

English Thai German Greek Chinese |Indonesian | Swedish Farsi

Acc.i F |Acc.! F |Acc.i F |Acc.i F |Acc.i F |Acc.! F |Acc.! F |Acc.i F

HT-G 76.8 1810 | 736 : 76.7 | 62.1 : 68.5 | 69.3 74.6 | 561 : 58.4 | 66.4 | 72.8 | 61.4 | 70.5 | 51.8 | 58.6
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HT-D (NN+0) J=0 | 86.1 | 86.1 | 83.6 : 83.6 | 73.9 : 73.9 | 82.1 1 821 | 77.9 | 77.9 | 81.1 811|821  82.1|74.6 | 74.6
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Data: Multilingual Geoquery
Baselines: (Lu, 2015)
(+0): models with distributed representations of semantic units.
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=== Cross-Lingual Representations
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-+ Semantic units with similar meanings gather together.
- Occasionally, semantic units conveying opposite meanings are

grouped together.
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v Summary
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v Summary
v Presented a novel method to learning distributed
representations of semantic units containing cross-lingual
information.
v Future work
v Learn representations and semantic parsers in a joint
manner.
v Investigate which languages from auxiliary corpus are the
leading sources of performance gains.
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