
Semantic	sensitivity
Correlation	with	human	evaluation.
a.k.a. word	similarity	task.
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Experiments	on	Fan-fiction	Corpus	

Examples	of	Similar	Words

Quantitative	Evaluations

Created	Japanese	Stylistic	Word	Similarity	Dataset
0Using	crowd-sourcing
0including	399	style-sensitive	word	pairs	&	5	scaled	scores

Training	corpus: 30M	utterances,	vocabulary	size	100K.	
Model	settings: nearby	window	width	5,	vector	size	600	(each	part	300).

Training	Setups

J Two	vectors	captured	stylistic	and	syntactic/semantic	similarity,	respectively.

J Stylistic	vectors	and	Baseline	#3	captured	stylistic	similarity	effectively.
J Syntactic/semantic	vectors	and	CBOW	vectors	captured	syntactic	similarity	well.

Proposed	Method

Key	Idea:	“The	style	of	all	words	in	one	utterance	is	consistent”

1 2

!"#$%&'

"( "#)( "# "#*( "|,#|"#*- ⋯⋯⋯⋯

!"#/01#

�I	gotta go	now	guys	.	Catch	ya later	!�

�

�
�

�

�
�

�

�
�

�

�
�

!" !#$%

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

&"
'"

&#$%
'#$%

&#$%
'#$%

!#$% !"
&"
'"

!#$%
&#$%
'#$%

�

�

!"#$%&'!"#/01#
�

���������	�
����

��
�������

1 Context	words	are	near	target	word:
Update	both		 and Q� � �� � �

2 Context	words	are	far	from	target	word:
Update	only	 Q� � �

Separation	of	Style	and	Meaning	by	Sampling	Strategy

PROBLEM:	Simple	stylistic	vector	also	captures the	syntactic/semantic	similarity,	due	to	
the	prediction	of	nearby	contexts.	

SOLUTION:	Learn	two	vectors	simultaneously	while	separating	style	and semantic
information	by	using	the	distance	between	the	target	and	the	context	as	a	clue.
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Stylistic	vector

Syntactic/semantic
vector
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Our	word	vector

ü Proposed	novel	style-sensitive	word	vectors	in	unsupervised	manner.
ü Created	word	pair	data	stylistically	similar	for	evaluation.

Syntactic	sensitivity
Concordance	rate	of	syntactic	features.
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Stylistic	sensitivity
Correlation	with	human	evaluation	
about	style using	our	dataset. Available	on	https://jqk09a.github.io/	style-sensitive-word-vectors/

ü Demonstrated	that	proposed	methods	capture	the	stylistic	similarity	
between	words.

Word	Vector (CBOW)

“+,-./	+12ℎ	/14156-	/2758	+155	,99:-	
+12ℎ	/14156-	+,-./	+12ℎ1;	6;	:228-6;98”

“+,-./	+12ℎ	/14156-	486;1;=/	+155	,99:-	
+12ℎ	/14156-	;81=ℎ>,-/” [Schütze+	‘95]

vectors	capture
stylistic	word	similarity
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Simple	stylistic	vector (CBOW-ALL-CTX)

Our	hypothesis
“?@A	B)CDA	EF	GDD	(EHIB	JK	EKA	L))AHGKMA	JB	MEKBJB)AK)”

Distributional hypothesis [Harris+	‘54]
“NEL	B@GDD	OKE(	G	(EHI	PC	)@A	MEQRGKC	J)	OAARB”

vectors	capture
syntactic	and	semantic	word	similarity

spaceswords

#1
#2
#3

L Stylistic	vectors	and	CBOW	vectors	captured	semantic	similarity	well,	
since	topics	are	also	consistent	within	an	utterance.


