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• Negative Sampling (NEG) is an important component in word2vec:

As an approximation to Noise Contrastive Estimation (NCE), NEG brings a significant 

speed-up and achieves very good performance on distributed word representation learning.

• But NEG is not targeted for training words, noise distribution is only based on the unigram 

distribution (word count):
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• We hypothesize that taking into account global, corpus-level information and generating a 

different noise distribution for each target word better satisfies the requirements of negative 

examples for each training word than the original frequency-based distribution.

1. Motivation

2. Graph-Based Negative Sampling

3. Experiments

Corpora

• We use the skip-gram negative sampling model with window size 5, vocabulary size 10000, 

vector dimension size 200, number of iterations 5 and negative examples 5 to compute 

baseline word embeddings.

• Our graph-based negative sampling models share the parameters of the baseline.

• All four models are trained on an English Wikipedia dump from April 2017 of three sizes: 

about 19M tokens, about 94M tokens (both are for detailed analyses and non-common 

parameters grid search in each of the three graph-based models) and around 2.19 billion 

tokens.

Evaluation Datasets

We evaluate the resulting word embeddings: 

• on word similarity tasks using WordSim-353 (Finkelstein et al., 2001) and SimLex-999 (Hill 

et al., 2014) (correlation with humans).

• on the word analogy task (Mikolov et al., 2013a) (% correct).

Statistical Significance

• Steiger’s Z tests (Steiger, 1980) for WordSim-353 and SimLex-999

• Approximate randomization (Yeh, 2000) for the word analogy task

4. Results

5. Future work

• Graph-based context words selection

• Graph-based training words reordering for word2vec

• Word co-occurrence matrix factorization for distributed word representation learning 

Build the graph-based negative sampling noise distribution in 3 steps!

Step 1: “Making the dough”- Generate an undirected weighted word co-occurrence network 

from the corpus and get the adjacency matrix 𝐴 from it for the future use.

Step 2: “Creating the toppings”- Three methods to generate basic noise distribution matrices 

on the word co-occurrence network.

Option 1 Directly using the training word context distribution 𝐴 extracted from the word co-

occurrence network.

• Zero co-occurrence case: Some vocabulary words may never co-occur with a given 

training word, which makes them impossible to be selected for this training word.

• Solution: Replacing all zeros in matrix with the minimum non-zero value of their 

corresponding rows.

Option 2 Calculating the difference between the original unigram distribution and the training 

word context distribution.

• For zeros and negative values in the matrix, we reset them to the minimum non-
zero value of the corresponding rows.

Option 3 Performing t-step random walks on the word co-occurrence network. 

• Using the t-step random walk transition matrix as the final noise distribution matrix

• Two versions: with/without self-loops

Step 3: “Baking”- Based on the previous results, use the power function to adjust the 

distribution and then normalize all rows of the adjusted matrix to get the final noise distribution.
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SGNS bigram distr. (Option 1) difference distr. (Option 2) random walk (Option 3)

distribution 𝒅𝒎𝒂𝒙 𝒑 𝒐𝒕𝒉𝒆𝒓𝒔

bigram 3 0.25 𝑟𝑒𝑝𝑙𝑎𝑐𝑒_𝑧𝑒𝑟𝑜𝑠 = 𝑇

difference 3 0.01

Random walk 5 0.25 𝑡 = 2, 𝑛o_self_loops = 𝑇

Best parameters

8  +  2.5 hours*

word2vec  corpus2graph

*Trained on the entire Wikipedia corpus using 50 logical

cores on a server with 4 Intel Xeon E5-4620 processors.

Training time


