
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

• Negative Sampling (NEG) is an important component in word2vec:

As an approximation to Noise Contrastive Estimation (NCE), NEG brings a significant

speed-up and achieves very good performance on distributed word representation learning.

• But NEG is not targeted for training words, noise distribution is only based on the unigram

distribution (word count):

𝑃𝑛 𝑤 =
𝑈(𝑤)

3
4

σ
𝑖=1
|𝑣𝑜𝑐𝑎𝑏|

𝑈(𝑤𝑖)
3
4

• We hypothesize that taking into account global, corpus-level information and generating a

different noise distribution for each target word better satisfies the requirements of negative

examples for each training word than the original frequency-based distribution.

1. Motivation

2. Graph-Based Negative Sampling

3. Experiments

Corpora

• We use the skip-gram negative sampling model with window size 5, vocabulary size 10000,

vector dimension size 200, number of iterations 5 and negative examples 5 to compute

baseline word embeddings.

• Our graph-based negative sampling models share the parameters of the baseline.

• All four models are trained on an English Wikipedia dump from April 2017 of three sizes:

about 19M tokens, about 94M tokens (both are for detailed analyses and non-common

parameters grid search in each of the three graph-based models) and around 2.19 billion

tokens.

Evaluation Datasets

We evaluate the resulting word embeddings:

• on word similarity tasks using WordSim-353 (Finkelstein et al., 2001) and SimLex-999 (Hill

et al., 2014) (correlation with humans).

• on the word analogy task (Mikolov et al., 2013a) (% correct).

Statistical Significance

• Steiger’s Z tests (Steiger, 1980) for WordSim-353 and SimLex-999

• Approximate randomization (Yeh, 2000) for the word analogy task

4. Results

5. Future work

• Graph-based context words selection

• Graph-based training words reordering for word2vec

• Word co-occurrence matrix factorization for distributed word representation learning

Build the graph-based negative sampling noise distribution in 3 steps!

Step 1: “Making the dough”- Generate an undirected weighted word co-occurrence network

from the corpus and get the adjacency matrix 𝐴 from it for the future use.

Step 2: “Creating the toppings”- Three methods to generate basic noise distribution matrices

on the word co-occurrence network.

Option 1 Directly using the training word context distribution 𝐴 extracted from the word co-

occurrence network.

• Zero co-occurrence case: Some vocabulary words may never co-occur with a given

training word, which makes them impossible to be selected for this training word.

• Solution: Replacing all zeros in matrix with the minimum non-zero value of their

corresponding rows.

Option 2 Calculating the difference between the original unigram distribution and the training

word context distribution.

• For zeros and negative values in the matrix, we reset them to the minimum non-
zero value of the corresponding rows.

Option 3 Performing t-step random walks on the word co-occurrence network.

• Using the t-step random walk transition matrix as the final noise distribution matrix

• Two versions: with/without self-loops

Step 3: “Baking”- Based on the previous results, use the power function to adjust the

distribution and then normalize all rows of the adjusted matrix to get the final noise distribution.

𝑃𝑛 𝑤𝑢, 𝑤𝑣 =
(𝐵𝑢𝑣)

𝑝

σ
𝑖=1
|𝐵𝑢|(𝐵𝑢𝑖)

𝑝

1LIMSI, CNRS, Université Paris-Saclay
2LRI, Université Paris-Sud, CNRS, Université Paris-Saclay

Zheng Zhang1,2 and Pierre Zweigenbaum1

GNEG: Graph-Based Negative Sampling for word2vec

word_id

word_id

lg(𝑃𝑛(𝑤))

NEG (unigram) noise distribution

word_id

word_id

lg (𝑤𝑜𝑟𝑑 𝑐𝑜𝑜𝑐𝑐𝑢𝑟rence)

word co-occurrence (bi-gram) distribution

Efficient Generation and Processing of Word Co-occurrence Networks Using corpus2graph

Zheng ZHANG, Ruiqing YIN, Pierre ZWEIGENBAUM, In Proceedings of NAACL 2018

Workshop on Graph-Based Algorithms for Natural Language Processing, New Orleans, US

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

Pearson Spearman Pearson Spearman Semantic Syntactic Total

WordSim-353 (correlation) SimLex-999 (correlation) Word Analogy (accuracy)

SGNS bigram distr. (Option 1) difference distr. (Option 2) random walk (Option 3)

distribution 𝒅𝒎𝒂𝒙 𝒑 𝒐𝒕𝒉𝒆𝒓𝒔

bigram 3 0.25 𝑟𝑒𝑝𝑙𝑎𝑐𝑒_𝑧𝑒𝑟𝑜𝑠 = 𝑇

difference 3 0.01

Random walk 5 0.25 𝑡 = 2, 𝑛o_self_loops = 𝑇

Best parameters

8 + 2.5 hours*

word2vec corpus2graph

*Trained on the entire Wikipedia corpus using 50 logical

cores on a server with 4 Intel Xeon E5-4620 processors.

Training time

