
PhraseCTM: Correlated Topic Modeling on
Phrases within Markov Random Fields

Input: Text corpus with phrases extracted by AutoPhrase [1] Output: Phrase-level topics and the correlation among them

Semantically Coherent Links for MRF
▶ Motivations:

• It’s nontrivial to apply CTM directly on phrases: (1) phrases are much
less than words; (2) CTM doesn’t perform well on short documents.

▶ Some observations:
• the topic of a phrase is highly related to the topics of other words

and phrases in the same document.
• some phrases’ meaning can be implied from their component words.
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It will be tough to make DC-X succeed, and to turn 
it into an operational orbital vehicle. Doubtless it 
will fail to meet some of the promised goals. The 
reason people are so fond of it is that it's the only 
chance we have now, or will have for a ong time to 
come, to develop a launch vehicle with radically 
lower costs.
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Figure: The arrows show semantically coherent links for MRF.
▶ Not all phrases can be implied by their component words.

• e.g., the newspaper Boston Globe [2].
▶ Semantically coherent links

• Format a document as “words, phrases, semantically coherent links
between phrases and component words”.

• determine the semantic coherent links between w(P)
i and wl(i) by

utilizing NPMI, s(w(P)
i ,wl(i)) = minj,k∈l(i){NPMI(wj,wk)} > τ = 0.4

PhraseCTM
In a Markov Random Field of document d, we have
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, and capture the correlation between topics like CTM:
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(a)The first stage: training on our proposed model PhraseCTM.
When observed words W and phrases W(P), we learn word topics
β, and phrase topics β(P).
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(b) The second stage: inferring the phrase topics’ correlation.
When given the phrases W(P), and the phrase topics β(P) learned
from the first stage, we infer Σ(P) as the correlation result.

Figure: Illustration of two stages of our method
We solve PhraseCTM by variational inference, and get the
correlation corr(P)(i, j) = Σ
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Dataset
|V| |V(P)| |W| |W(P)| |D| |W|/|D| |W(P)|/|D|

20 Newsgroup 22,787 4,245 1,361,843 51,024 18,828 72.3 2.7
Argentina@Wiki 20,847 5,505 1,052,674 98,502 8,617 122.2 11.4

Mathematics@Wiki 43,779 27,371 6,062,815 594,704 27,947 216.9 21.3
Chemistry@Wiki 76,265 67,979 11,346,781 1,546,088 60,375 187.9 25.6

PubMed Abstracts 34,125 24,233 11,274,350 968,928 99,214 113.6 9.8
Table: The statistics of the datasets. In average, phrases appear
more sparse than words. Phrases are extracted by AutoPhrase [1].
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Figure: A part of the topic graph (K=100) generated by our
method on the Argentina-related Wikipedia pages.

Human Study
CTM PhraseCTM

Maths Argentina Maths Argentina
Group A 12.4 - - 7.5
Group B - 14.0 6.7 -

In Average 13.2 7.1
Table: Human time consumption on topic labeling for correlated
topics generated by CTM and PhraseCTM, measured in minutes.

Quantitative Result
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Figure: The quality of the learned topics.
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