PhraseCTM: Correlated Topic Modeling on Phrases within Markov Random Fields

Input: Text corpus with phrases extracted by AutoPhrase [1] **Output:** Phrase-level topics and the correlation among them

Semantically Coherent Links for MRF

Motivations:

- It's nontrivial to apply CTM directly on phrases: (1) phrases are much less than words; (2) CTM doesn't perform well on short documents. Some observations:
 - the topic of a phrase is highly related to the topics of other words and phrases in the same document.
 - some phrases' meaning can be implied from their component words.

Dataset

		V	$ V^{(\mathcal{P})} $	W	$ W^{(\mathcal{P})} $	D	W / D	$ W^{(\mathcal{P})} / D $		
	20 Newsgroup	22,787	4,245	1,361,843	51,024	18,828	72.3	2.7		
	Argentina@Wiki	20,847	5,505	1,052,674	98,502	8,617	122.2	11.4		
	Mathematics@Wiki	43,779	27,371	6,062,815	594,704	27,947	216.9	21.3		
-	Chemistry@Wiki	76,265	67,979	11,346,781	1,546,088	60,375	187.9	25.6		
	PubMed Abstracts	34,125	24,233	11,274,350	968,928	99,214	113.6	9.8		
Table: The statistics of the datasets. In average, phrases appear										
nore sparse than words. Phrases are extracted by AutoPhrase [1].										

Figure: The arrows show semantically coherent links for MRF.

- Not all phrases can be implied by their component words.
 - e.g., the newspaper Boston Globe [2].
- Semantically coherent links
 - Format a document as "words, phrases, semantically coherent links between phrases and component words".
 - determine the semantic coherent links between $w_i^{(P)}$ and $w_{l(i)}$ by utilizing NPMI, $s(w_i^{(\mathcal{P})}, w_{l(i)}) = \min_{i,k \in l(i)} \{ \mathsf{NPMI}(w_i, w_k) \} > \tau = 0.4$

PhraseCTM

In a Markov Random Field of document d, we have

An Example

Figure: A part of the topic graph (*K*=100) generated by our method on the Argentina-related Wikipedia pages.

Human Study

$$p(z_d, z_d^{(\mathcal{P})} | \eta_d) = \frac{1}{A_d(\eta_d)} \prod_{m=1}^{N_d} p(z_{d,m} | \eta_d) \cdot \prod_{i=1}^{N_d^{(\mathcal{P})}} p(z_{d,i}^{(\mathcal{P})} | \eta_d) \cdot \exp\{\sum_{i=1}^{N_{L_d}} (\frac{\kappa}{|l(d,i)|} \sum_{j \in l(d,i)} I(z_{d,i}^{(\mathcal{P})} = z_{d,j}))\}$$

, and capture the correlation between topics like CTM: $p(z_{d,j} = k | \eta_d) = \exp \eta_{d,k} / \sum \exp \eta_{d,k} , \quad \eta_d \sim \mathcal{N}(\mu, \Sigma)$

(a) The first stage: training on our proposed model PhraseCTM. When observed words W and phrases $W^{(\mathcal{P})}$, we learn word topics β , and phrase topics $\beta^{(\mathcal{P})}$.

	Maths	Argentina	Maths	Argentina	
Group A	12.4	-	-	7.5	
Group B	-	14.0	6.7	-	
In Average	-	13.2	7.1		

Table: Human time consumption on topic labeling for correlated topics generated by CTM and PhraseCTM, measured in minutes.

Figure: The quality of the learned topics.

(b) The second stage: inferring the phrase topics' correlation. When given the phrases $W^{(\mathcal{P})}$, and the phrase topics $\beta^{(\mathcal{P})}$ learned from the first stage, we infer $\Sigma^{(\mathcal{P})}$ as the correlation result. **Figure:** Illustration of two stages of our method

We solve PhraseCTM by variational inference, and get the correlation $corr^{(\mathcal{P})}(i,j) = \frac{\sum_{i,j}^{(\mathcal{P})}}{\sqrt{\sum_{i,j}^{(\mathcal{P})}\sum_{i,j}^{(\mathcal{P})}}}.$

References

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Clare R Voss, and Jiawei Han. Automated phrase mining from massive text corpora. In: TKDE 2018. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. |2| Distributed representations of words and phrases and their compositionality. In : *NIPS 2013*.

Weijing Huang, Tengjiao Wang, Wei Chen, Siyuan Jiang, Kam-Fai Wong huangwaleking@gmail.com, tjwang,pekingchenwei@pku.edu.cn, sjiang1@nd.edu, kfwong@se.cuhk.edu.hk Peking University, China; University of Notre Dame, USA; The Chinese University of Hong Kong, Hong Kong