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Span Parsing is SOTA in Constituency Parsing

® CrosstHuang 2016 introduced Span Parsing

® But with greedy decoding.

® Stern et al. 2017 had Span Parsing with Exact Search and Global Training

® But was too slow: O(n3)

O
Cross + Huang 2016 *

® Can we get the best of both worlds?
Our Work

® Something that is both fast and accurate?

Speed

New at ACL 2018!
Also Span Parsing!

O o0
Stern et al. 2017 Kitaev + Klein 2018
Joshi et al. 2018

Accuracy



Both Fast and Accurate!
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Baseline Chart Parser (Stern et al. 2017a) 91.79

Our Linear Time Parser 91.97




In this talk, we will discuss:

® Linear Time Constituency Parsing using dynamic programming
® Going slower in order to go faster: O(n3) = O(n*) — O(n)

® Cube Pruning to speed up Incremental Parsing with Dynamic Programming
® From O(n b2) to O(n b log b)

® An improved loss function for Loss-Augmented Decoding

® 2nd highest accuracy among single systems trained on PTB only

O(2™) — O(n’®) = O(n*) ~ O(nb*) ~ O(nblogb)



Span Parsing

s(z,7,X)
® Span differences are taken from an encoder 1
(in our case:a bi-LSTM)
S

® A span is scored and labeled by a feed-forward
network.

® [The score of a tree is the sum of all the labeled (fi = fis bi = bj)

span scores T

Stree(t) = > s(2,7, X)

(Z,j,X)Et <S> o You 1 should - eat 3  ice 4 cream s </S>
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Incremental Span Parsing Example

Action Label Stack

0 1 2 3 4 5
Eat ice cream after lunch

VB NN NN IN NN
Cross + Huang 2016



Incremental Span Parsing Example

Action Label Stack

1| shit o (0,1)

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016



Incremental Span Parsing Example

Action Label Stack

1| shit o (0,1)

VB NN

Eat 1ice

2 Shift % (0, 1) (1, 2)

Eat ice cream after lunch

VB NN NN IN NN
Cross + Huang 2016



Incremental Span Parsing Example

Action Label Stack

1| shit o (0,1)

VB NN NN E E
] 3| Shift 5 2(0,1)(1,2) (2, 3)

Eat 1ce cream

2 Shift % (0, 1) (1, 2)

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016



Incremental Span Parsing Example

Action Label Stack

1| shit o (0,1)

VB NP

\ A 3|  Shift % 5(0,1)(1,2) (2, 3)
Eat NN NN

- 4| Reduce NP (0, 1)(1,3)

1ce cream

2 Shift % (0, 1) (1, 2)

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016



Incremental Span Parsing Example

Action Label Stack
. 1| Shif s (0,1)
Vi NP 2 Shift % (O 1) (1, 2)
AN 3|  Shift s  (0,1)(1,2) (2 3)
Eat NN NN
\ | 4| Reduce NP  (0,1)(1,3)
1Ice cream
5| Reduce @ (0, 3)

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016



Incremental Span Parsing Example

VB NP

Action Label Stack
. 1| Shif s (0,1)
/\ 2 Shift % (o 1) (1, 2)

N 3| shi

Eat NN NN IN

1ce cream after

6 Shift

Eat ice cream after lunch
VB NN NN IN NN

‘ | ‘ 4 | Reduce

5| Reduce

7 (0, 1) (1, 2) (2, 3)
NP (0, 1) (1, 3)
7 (0, 3)

7 (0, 3) (3, 4)

Cross + Huang 2016
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Incremental Span Parsing Example

Action Label Stack

> 1 shit @ (01)

N 2|  Shift s  (0,1)(1, 2)

VB NP NP

N ‘ 3/ shit e (0.1)(1,2)(23)
Eat NN NN IN NN

I N B 4| Reduce NP (0, 1)(1,3)

1ce cream after lunch

5| Reduce @ (O 3)

6| st o (0,934

V4 Shift NP (0, 3) (3, 4) (4, 5)

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016



Incremental Span Parsing Example

Action Label Stack

> 1| shit & (0,1)

N 2| Shift 0 5(0,1)(1,2)

VB

NP PP
VN N 3| shift @ (0,1)(1,2)(2 3)
IN NP

Eat NN NN
I 4| Reduce NP (0,1)(1,3)

ice cream after NN

‘ 5| Reduce @ (O 3)

lunch 6 Shift ? (O, 3) (3, 4)

V4 Shift NP (0, 3) (3, 4) (4, 5)

8 Reduce PP (0,3)(3,5)

Eat ice cream after lunch
VB NN NN IN NN

Cross + Huang 2016



Incremental Span Parsing Example

S Action Label Stack

VP 1 Shift %) (O 1)

) T 2| shit e (0.1)(1,2)

VB

NP PP
VN N 3| shift @ (0,1)(1,2)(2 3)
IN NP

Eat NN NN
I 4| Reduce NP (0,1)(1,3)

ice cream after NN

‘ 5| Reduce @ (O 3)

lunch 6| Shift s  (0,3)(3 4)
7| Shift NP (0, 3) (3, 4) (4, 5)

8 Reduce PP (0,3)(3,5)

Eat ice cream after lunch 9| Reduce S-VP (O 5)

VB NN NN IN NN |
Cross + Huang 2016



How Many Possible Parsing Paths?

® ) actions per state.

e O(2n)
=
Ay
T =
=
\g\

/]
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Equivalent Stacks!?

® Observe that all stacks that end with (i, j) will be treated the same!

e _..Until (i,)) is popped off.

becomes [..., (7, 9)]

® 50 we can treat these as “‘temporarily equivalent”, and merge.

Graph-Structured Stack (Tomita 1988; Huang + Sagae 2010) 7



Equivalent Stacks!?

® Observe that all stacks that end with (i, j) will be treated the same!

e _..Until (i,)) is popped off.

..., (0, 2)] [..., (2, 7)]

[..., (7, 9)]

[..., (3, 7)]
[..., (0, 3)]

® This is our new stack representation. eft Pointers

Graph-Structured Stack (Tomita 1988; Huang + Sagae 2010) 8



Equivalent Stacks!?

® Observe that all stacks that end with (i, j) will be treated the same!

e _..Until (i) is popped off.

iy o §
e

[0 (0, 2] [ (2 7)] 4 T [..., (2, 9)]

L (0 9N T

= |eft Pointers

[..., (K, D] [..., (], ))]

Reduce Actions: =———————— 0O(n3)

[..., (K, ))]

Graph-Structured Stack (Tomita 1988; Huang + Sagae 2010) 1°



Dynamic Programming: Merging Stacks

® Temporarily merging stacks will make our state space polynomial.

N/ /)
MU

N\
o~ 7
S

® And our parsing state is represented by top span (i, j).

20



Becoming Action Synchronous

® Shift-Reduce Parsers are traditionally action synchronous.
® This makes beam-search straight forward.

® We will also do the same

® But will show that this will slow down our DP (before applying‘beam-search)

21



Action Synchronous Parsing Example

—sh —>|

Gold:

Shift
(0,1)

22



Action Synchronous Parsing Example

Gold:

Shift
(0,1)

Shift
(1,2)

Gold Parse

23



Action Synchronous Parsing Example

Gold:

Shift
(0,1)

Shift
(1,2)

Shift
(2, 3)

e | @ft Pointers

Gold Parse

24



Action Synchronous Parsing Example

Gold:

Shift
(0,1)

Shift
(1,2)

Shift
(2, 3)

Reduce
(1, 3)

= |_©ft Pointers

Gold Parse

25



Action Synchronous Parsing Example

Gold:

Shift
(0,1)

Shift
(1,2)

Shift
(2, 3)

Reduce
(1, 3)

Reduce
(0, 3)

= |_©ft Pointers

Gold Parse

26



Action Synchronous Parsing Example

= |_©ft Pointers

1 2 3 4 5 6
Gold Parse
——sh —> (0,1) ——sh —> (1,2) ——sh —> (2,3) ——sh—> (3,4) —sh—> (4,5) r—> (3,5)
\I‘ \I' I‘
o2 Tas (2.4) —shs (4.5)
? ? S >
Rt >\\< PEa Sy
2,3) e (3 1
<
ri&(o 3) \r\ (2,4)
Y, \ h
N (3,4)
Shift Shift Shift Reduce Reduce Shift

Gold:

(0,1) (1,2) (2, 3) (1, 3) (0, 3) (3, 4)




Action Synchronous Parsing Example

1 2 3 4 5 § 7

—sh—{ (0,1) —sh— (1,2) ——sh—{ (2,3) —sh— (3,4) —sh—> (4,5) —r— (3,5) —r—> (2 5) r r7>zl (0,5)

\r\ \r\ I, i r

(0,2) (1,3) (2,4) —sh— (4,5) 1> ( /r . (2,5) /r

sh \ ~ >«8h /
(2,3) Sh (3,4) — \ 3 (1,4) (Sh (4,5) > (3,5) /
T3] N\ (24) —8 (04) —an (4,5)
™ /
sh
e /
Gold: Shift Shift Shift Reduce Reduce Shift Shift Reduce Reduce
' (0,1) (1,2) (2, 3) (1, 3) (0, 3) (3, 4) (4, 5) (3, 5) (0, 5)
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O(n)

Runtime Analysis

N SN /N /N I/

A/ A
XS

29

Huang+Sagae 2010



O(n)

Runtime Analysis

~— N SN ,/N /N /Y

N— O N N NN

A A
DYV ava

#steps: 2n — 1 = O(n)

30

Huang+Sagae 2010



Runtime Analysis: O(n*)

()
#states per step: O(n?)

¢ —sh— (0,1) —sh— (1,2) il 2,3) il 3,4 i (4,5) > (3,5) r/: (2,5) r7 (1,5) —r
e (072) e (173) h\ (274) _Sh;) (475) ii"’ (375) ?r > (275) /11:7
\sh\ N N Sgl r
’ \I‘\ —sh—> r—>»
(03)  “(24) 3> (04) —sh— (4,5)
\ S
sh r/
@ (3.4)

#steps: 2n — 1 = O(n)

Huang+Sagae 2010
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Runtime Analysis: O(n*)

()
#states per step: O(n?)

¢ —sh— (0,1) —sh— (1,2) il 2,3) il 3,4 i (4,5) > (3,5) r/: (2,5) r7 (1,5) —r
e (072) e (173) h\ (274) _Sh;) (475) ii"’ (375) ?r > (275) /11:7
\sh\ N N Sgl r
’ \I‘\ —sh—> r—>»
(03)  “(24) 3> (04) —sh— (4,5)
\ S
sh r/
@ (3.4)

#steps: 2n — 1 = O(n)

O(n’) states

Huang+Sagae 2010
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Runtime Analysis: O(n*)

#left pointers per state: O(n) 4.

€ —sh—> (0,1) —sh—> (1,2) —sh—> (2,3) —sh—> ( :
T~r T~r

Check out the paper for our new theorem:

V'=1-2(j—i)+1
Thanks to Dezhong Deng!

Pl (6] ..., G )
H1: ..., (k)]

O(n?)

33



Going slower to go faster

® Our Action-Synchronous algorithm has a slower runtime than CKY!

® However, it also becomes straightforward to prune using beam search.

® So we can achieve a linear runtime in the end.

¢ —sh— (0,1) —sh— (1,2) iSh_) (2,3) (Sh_) (3,4) <sh—> (4,5) —r— (3,5) —r; (2,5) —r7 (1,5) —r— (0,5)
\sh\ N >§SI}.1 r
(23) _aix (34) =3 (14) —sis (49 /o9 7
r N, ~,
(0,3) (™ (24) =3 (0,4) —sh— (4,5)
\sh / A
N (3,4) %

€ —sh—> (0,1) —sh—> (1,2) (Sh—) (2,3) —sh—> (3,4) —sh—> (4,5) —TIr—> (3,5) —Tr—> (2,5) —TIr—> (1,5) —r;) (O,5)
T 0.2) —sho> (2,3) —1—> (0,3) —sh> (3,4) —r—> (0.4) —sh> (4.5)

34



Now our runtime is O(n).

€ —sh—> (0,1) —sh—> (1,2) (Sh_) (2,3) (Sh—) (3,4) (Sh—) (4,5) r—> (3,5) r/: (2 5) > (1 5)
™ 0.2) _ 3) _ T 24) —a (45) (45) —r— (35)
o (2,3) r\i (0,3) —sh— (3,4) /Sr > (O 4) —sh— (4 5)
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But this O(n) is hiding a constant.




But this O(n) is hiding a constant.

b states per action step

O(b) left pointers per state

O(nb?) runtime

37



Cube Pruning

® We can apply cube pruning to make O(nb log b)

Chiang 2007
Huang+Chiang 2007



Cube Pruning

® We can apply cube pruning to make O(nb log b)

€ —sh—> (0,1) —sh—> (1,2) <Sh_) (2,3) <Sh_) (3,4) <Sh_) (4,5) r (3,5)
I~ I~ I~
(072) (173) (274) % sh (475)
\Sh \r
~ ~
(2,3) r— (0,3) —sh—}, (3,4)

® By pushing all states and their left pointers into a heap

Chiang 2007
Huang+Chiang 2007



Cube Pruning

® We can apply cube pruning to make O(nb log b)

€ —sh—> (0,1) —sh—> (1,2) —sh—> (2,3) —sh—> (3,4) —sh—> (4,5) r (3,5) r—> (2,5)

T~y T~y T~y
~ ~ ~
(072) (173) (274) §_ Sh (475) (475)
\Sh\ \r\ sh/7
(2,3) r— (0,3) —sh—}. (3,4) r— (0,4)

® By pushing all states and their left pointers into a heap

® And popping the top b unique subsequent states

Chiang 2007
Huang+Chiang 2007



Cube Pruning

® We can apply cube pruning to make O(nb log b)

€ —sh—> (0,1) —sh—> (1,2) —sh—> (2,3) —sh—> (3,4) —sh—> (4,5) r (3,5) r—> (2,5)

T~y T~y T~y
~ ~ ~
(072) (173) (274) §_ Sh (475) (475)
\Sh\ \r\ sh/7
(2,3) r— (0,3) —sh—}. (3,4) r— (0,4)

® By pushing all states and their left pointers into a heap

® And popping the top b unique subsequent states

® First time Cube-Pruning has been applied to Incremental Parsing

Chiang 2007
Huang+Chiang 2007



Runtime on PTB and Discourse Treebank
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Training

® Structured SVM approach (Taskar et al. 2003; Stern et al. 2017):

® Goal:Score the gold tree higher than all others by a margin:

Vt,s(t*) — s(t) > A(t, t*)

® Loss Augmented Decoding:

® During Training: Return the most violated tree (i.e., highest augmented score):

t = arg max (S(t) + A t*))

® Minimize: (s(t) + AL, t*)) — s(t*)

43



Loss Function

® Counts the incorrectly labeled spans in the tree (Stern et al. 2017)

® Happens to be decomposable, so can even be used to compare partial trees.

At 1) = 3 ]l(X Y t@j))

(4,5, X )€t

44



Novel Cross-Span Loss

® We observe that the null label @ is used in two different ways:
® TJo facilitate ternary and n-ary branching trees.

® As a default label for incorrect spans that violate other gold spans.

(1, j) =0

45



Novel Cross-Span Loss

® We modify the loss to account for incorrect spans in the tree.

At,t) = X (X » t(”))

46



Novel Cross-Span Loss

® We modify the loss to account for incorrect spans in the tree.
cross(z, 7,t™)

® Indicates whether (i, j) is crossing a span in the gold tree

/ /

A(t,t*)y= > 1 (X 7+ tzkz.j) \V cross(1, 7, t*))
(4,5, X ) Et |

® Still decomposable over spans, so can be used to compare partial trees.

47



Max-Violation Updates

® Take the largest augmented loss value across all time steps.

® This is the Max-Violation, that we use to train.

best in the beam =
~ S
Corre — ' u —
Ct s — aJr=
>
worst In the beam _ last valid invalid

fallg off update update!

the beam biggest
violation

Huang et. al. 2012

(standard)

48



Comparison with Baseline Chart Parser

Model Note F1 (PTB test)
Stern et al. (2017a) Baseline Chart Parser 91.79
+0Ur cross-span loss 91.81
Beam 15 91.84
Our Work e
Beam 20 91.97

49



Comparison to Other Parsers

PTB only, Single Model, End-to-End Reranking, Ensemble, Extra Data
Model Note F1 Model Note F1

Durett + Klein 2015 911 Vinyals etal. 2015 | Ensemble  90.5
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" | Generative ..
________ cross + Huang 2016 | Original span Parser 91 Dyeretal 208 | Reranking =~ *°°

Liu + Zhang 2016 91.7 Choe + Charniak 2016 | Reranking 93.8
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" | Ensemble ., ..

Dyer et al. 2016 Discriminative ~ 91.7 Fried et al. 2017 Reranking 94.25

Stern et al. 2017a Saseline 91.79

Chart Parser

............................................................................................................................................................................................................................................

Stern et al. 2017c Separate Decoding 92.56

Our Work Beam20  91.97
50



Conclusions

® |inear-Time, Span-Based Constituency Parsing with Dynamic Programming
® Cube-Pruning to speedup Incremental Parsing with Dynamic Programming
® Cross-Span Loss extension for improving Loss-Augmented Decoding

® Result: Faster and more accurate than cubic-time Chart Parsing

® 2nd highest accuracy for single-model end-to-end systems trained on PTB only

Stern et al. 2017c is more accurate, but with separate decoding, and is much slower

® After this ACL, definitely no longer true. (e.g. Joshi et al. 2018, Kitaev+Klein 2018)

But both are Span-Based Parsers and can be linearized in the same way!

O(2™) = O(n?) = O(n*) ~ O(nb*) ~ O(nblog b)

51



Thank you! Questions!?

Time (sec)

Chart Parsing: O(n*?2%)

Beam 20 No Cube-Pruning: O(n! %)
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