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Parsing by Local Decisions
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Non-local Consequences

Loss-Evaluation Mismatch
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Dynamic Oracle Training

Explore at training time. Supervise each state with an expert policy.

addresses [
exposure -
bias L

L(O) = 2 log p(y; |91.6-1, %; 0) choose Yt to maximize | 05
t

True Parse

Prediction
(sample, or greedy)

Oracle

y | (S —

A\

y (SK
y*

(NP |— The —| cat — ...

(NP Y (VP Y The Y
(NP The The cat

1 addresses

mismatch

achievable F1 (typically)

[Goldberg & Nivre 2012; Ballesteros et al. 2016; inter alia]



Dynamic Oracles Help!

Expert Policies / Dynamic Oracles

Daume Ill et al., 2009; Ross et al., 2011; mostly
Choi and Palmer, 2011; Goldberg and Nivre, 2012; - dependency
Chang et al., 2015; Ballesteros et al., 2016; Sternetal. 2017 . parsing
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What if we don’t have a dynamic oracle?
Use reinforcement learning



Reinforcement Learning Helps! (in other tasks)
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Policy Gradient Training

Minimize expected sequence-level cost:
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Policy Gradient Training
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Experiments



Setup

Parsers Training
Span-Based [Cross & Huang, 2016]

Top-Down [Stern et al. 2016] X
RNNG [Dyer et al. 2016]
In-Order [Liu and Zhang, 2017]

Static oracle
Dynamic oracle
Policy gradient
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Training Efficiency
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French Treebank F1
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88

87

86

85

84

83

Static oracle

M Policy gradient

® Dynamic oracle

Span-Based

Top-Down

RNNG-128

RNNG-256

In-Order



Conclusions

> Local decisions can have non-local consequences
> Loss mismatch

> Exposure bias

> How to deal with the issues caused by local decisions?
> Dynamic oracles: efficient, model specific
> Policy gradient: slower to train, but general purpose



Thank you!



For Comparison: A Novel Oracle for RNNG
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2. Otherwise, open the outermost unopened true constituent at this position.
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