

Document Embedding Enhanced Event Detection with Hierarchical and Supervised Attention

Yue Zhao, Xiaolong Jin, Yuanzhuo Wang, Xueqi Cheng

University of Chinese Academy of Sciences CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences

≡ Content

Introduction

- Event Detection
 - subtask of event extraction
 - given a document, extract event triggers from individual sentences and further identifies the (pre-defined) type of events
- Event Trigger
 - words in sentences that most clearly expresses occurrence of events

... They have been *married* for three years. ...

Event Trigger is "married", which represents a marry event

Motivation

■ Motivation

Some shortcomings of existing works

Manually designed document-level feature

Ji and Grishman, ACL, 2008

Liao and Grishman, ACL, 2010

Huang and Riloff, AAAI, 2012

Learning document embedding without supervision, cannot specifically

capture event-related information

Duan et al., IJCNLP, 2017

DEEB-RNN : The Proposed Model

ED Oriented Document Embedding Learning

Document-level Enhanced Event Detector

Word-level embeddings ➢ Word encoder $h_{it} = \text{Bi-} \overline{\text{GRU}}_{w}([w_{it}, e_{it}])$ ➤ Word attention $u_{it} = \tanh(W_{w}h_{it})$ $\alpha_{it} = u_{it}^{T} c_{it}$ Sentence representation $s_i = \sum \alpha_{it} h_{it}$

Gold word-level attention signal:

- "Indicated" is a event trigger and is setted as 1, other words are setted as 0.
- Loss function:

$$E_{w}(\alpha^{*}, \alpha) = \sum_{i=1}^{L} \sum_{t=1}^{T} (\alpha_{it}^{*} - \alpha_{it})^{2}$$

The square error as the general loss of the attention at word level to supervise the learning process.

Sentence-level embeddings Sentence encoder $q_i = \text{Bi-GRU}_{s}(s_i)$ Sentence attention $t_i = \tanh(W_s q_i)$ $\beta_i = t_i^T c_s$ Document representation

$$d = \sum_{i=1}^{L} \beta_i s_i$$

Gold sentence-level attention signal:

- S1, S3 and SL are sentences with event triggers and is setted as 1, other sentences are setted as 0.
- Loss function:

$$E_{s}(\boldsymbol{\beta}^{*},\boldsymbol{\beta}) = \sum_{i=1}^{L} (\boldsymbol{\beta}_{i}^{*} - \boldsymbol{\beta}_{i})^{2}$$

The square error as the general loss of the attention at sentence level to supervise the learning process.

Model - Document-level Enhanced Event Detector

Event Detector:

$$f_{jt} = \text{Bi-GRU}_e([d, w_{jt}, e_{jt}])$$

 softmax output layer to get the predicted probability for each word

Loss function:

$$J(y,o) = -\sum_{j=1}^{L} \sum_{t=1}^{T} \sum_{k=1}^{K} I(y_{jt} = k) \log o_{jt}^{(k)}$$

cross-entropy error

Model - Joint Training

Joint Loss Function:

$$J(\theta) = \sum_{\forall d \in \phi} (J(y, o) + \lambda E_{w}(\alpha^{*}, \alpha) + \mu E_{s}(\beta^{*}, \beta))$$

- $\triangleright \theta$ denotes all parameters used in DEEB-RNN
- $\triangleright \phi$ is the training document set
- $\succ \lambda$ and μ are hyper-parameters for striking a balance

Experiments

ACE 2005 Corpus

- ➤ 33 categories
- ➢ 6 sources
- 599 documents
- ≻ 5349 labeled events

E	English								
v	words				files				
1	IP	DUAL	ADJ	NORM	1P	DUAL	ADJ	NORM]
Ν	W	60658	57807	33459	48399	128	124	81	106
E	3N	59239	58144	52444	55967	239	234	217	226
E	BC	46612	46110	33874	40415	68	67	52	60
۷	NL	45210	43648	35529	37897	127	122	114	119
l	JN	45161	44473	26371	37366	58	57	37	49
0	CTS	47003	47003	34868	39845	46	46	34	39
T	lotal	303833	297185	216545	259889	666	650	535	599

Experiments - Configuration

Partitions	#Documents
Training set	529
Validation set	30
Test set	40

Parameters	Setting
GRU_w, GRU_s, GRU_e	300, 200, 300
$W_{_W}, W_{_S}$	600, 400
entity type embeddings	50 (randomly initialized)
word embeddings	300 (Google pre-trained)
dropout rate	0.5
training	SGD

Experiments – Model analysis

Model Variants:

- **DEEB-RNN** computes attentions without supervision
- DEEB-RNN1 uses only the gold word-level attention signal
- DEEB-RNN2 uses only the gold sentence-level attention signal
- DEEB-RNN3 employs the gold attention signals at both word and sentence levels

Methods	λ	μ	P	R	F_1
Bi-GRU	-	-	66.2	72.3	69.1
DEEB-RNN	0	0	69.3	75.2	72.1
DEEB-RNN1	1	0	70.9	76.7	73.7
DEEB-RNN2	0	1	72.3	74.5	73.4
DEEB-RNN3	1	1	72.3	75.8	74.0

Models with document embeddings outperform the pure Bi-GRU method.

The model with both gold attention signals at word and sentence levels performs best.

Experiments - Baselines

- Feature-based methods without document-level information :
 - Sentence-level(2011), Joint Local(2013)
- Representation-based methods without document-level information :
 - JRNN(2016), Skip-CNN(2016), ANN-S2(2017)
- Feature-based methods using document level information :
 - Cross-event(2010), PSL(2016)
- Representation-based methods using document-level information :
 - DLRNN(2017)

Experiments – Main Results

Traditional Event Detection Models

- Feature-based without Document-level
 Representation-based without Document-level
- Using Document-level

DEEB Models

Methods	P	R	F_1
Sentence-level (2011)	67.6	53.5	59.7
Joint Local (2013)	73.7	59.3	65.7
JRNN (2016)	66.0	73.0	69.3
Skip-CNN (2016)	N/A	N/A	71.3
ANN-S2 (2017)	78.0	66.3	71.7
Cross-event (2010) [†]	68.7	68.9	68.8
PSL (2016)†	75.3	64.4	69.4
DLRNN (2017)†	77.2	64.9	70.5
DEEB-RNN1†	70.9	76.7	73.7
DEEB-RNN2†	72.3	74.5	73.4
DEEB-RNN3†	72.3	75.8	74.0

 Our models consistently out-perform the existing state-of-the-art methods in terms of both recall and F1-measure.

ESummary

Conclusions

- We proposed a hierarchical and supervised attention based and document embedding enhanced Bi-RNN method.
- We explored different strategies to construct gold word- and sentence-level attentions to focus on event information.
- We also showed this method achieves best performance in terms of both recall and F1-measure.

Future work

- Automatically determine the weights of sentence and document embeddings.
- Use the architecture for another text task.

Thank you for your attention!

Q&A

Email : zhaoyue@software.ict.ac.cn