Orthographic features for bilingual lexicon induction

Parker Riley and Daniel Gildea

University of Rochester

July 17, 2018

Overview

- Research question
- Task and general approach
- Baseline system
- Proposed modifications
- Results
- Conclusion

- Can orthographic (spelling) information enable better word translations in low-resource contexts?
 - Languages with common ancestors and/or borrowing exhibit increased lexical similarity
 - Spelling of words can carry signal for translation
 - Low-resource pairs are most in need of additional signal

Overview - Task and general approach

- Bilingual lexicon induction: single-word translations (modern-moderno)
- Operate on word embeddings
 - Haghigi et al. (2008): orthographic features
 - Mikolov et al. (2013): word2vec, linear mapping
- Minimal supervision

Baseline: Artetxe et al. (2017)

- Start with dictionary D (inferred from numerals)
- Learn matrix W minimizing Euclidean distance between target (Z) and mapped source (XW) embeddings of pairs in D
- Use nearest neighbors as entries in new dictionary
- Repeat until convergence

Language	English Word	Baseline's Prediction	Reference
German	unevenly	gleichmäßig (evenly)	ungleichmäßig
German	Ethiopians	Afrikaner (Africans)	Äthiopier
Italian	autumn	primavera (spring)	autunno
Finnish	Latvians	ukrainalaiset (Ukrainians)	latvialaiset

- Suffers from clustering problems present in word2vec
 - Similar distributions \rightarrow similar embeddings
- Hints of correct translation present in spelling

- 1. Use normalized edit distance in nearest-neighbor calculation
 - During dictionary induction, distances between similarly-spelled words are reduced
- 2. Extend embedding vectors with character counts
 - Extend vectors with scaled counts of letters in both language's alphabets (scale constant $k \leq 1$)

Word	d_1	<i>d</i> ₂
aba	0.123	0.456

 \downarrow

Word	d_1	<i>d</i> ₂	а	b
aba	0.123	0.456	2 <i>k</i>	1k

Quantitative results

English Word Translation Accuracy

- Universally outperform baseline
- Best when combined; largest contribution from embedding extension
- Improvement less pronounced for English-Finnish (linguistic dissimilarity)

Language	English Word	Baseline's Prediction	Our Prediction
German	unevenly	gleichmäßig (evenly)	ungleichmäßig
German	Ethiopians	Afrikaner (Africans)	Äthiopier
Italian	autumn	primavera (spring)	autunno
Finnish	Latvians	ukrainalaiset (Ukrainians)	latvialaiset

- Use orthographic information to disambiguate semantic clusters
- Significant gains in adequacy

- Orthographic information can improve unsupervised bilingual lexicon induction, especially for language pairs with high lexical similarity.
- These techniques can be incorporated into other embedding-based frameworks.

$$W^{*} = \arg\min_{W} \sum_{i=1}^{|V^{X}|} \sum_{j=1}^{|V^{Z}|} D_{ij} ||X_{i*}W - Z_{j*}||^{2}$$

= $\arg\min_{W} \sum_{i=1}^{|V^{X}|} ||X_{i*}W - (DZ)_{i*}||^{2}$
= $\arg\min_{W} \sum_{i=1}^{|V^{X}|} ||X_{i*}W||^{2} + ||(DZ)_{i*}||^{2} - 2X_{i*}W((DZ)_{i*})^{T}$
= $\arg\min_{W} \sum_{i=1}^{|V^{X}|} -2X_{i*}W((DZ)_{i*})^{T} = \arg\max_{W} \sum_{i=1}^{|V^{X}|} X_{i*}W((DZ)_{i*})^{T}$
= $\arg\max_{W} \operatorname{Tr}(XWZ^{T}D^{T})$

$$W^* = \arg \max_{W} \operatorname{Tr}(XWZ^{\mathsf{T}}D^{\mathsf{T}})$$

= $\arg \max_{W} \operatorname{Tr}(Z^{\mathsf{T}}D^{\mathsf{T}}XW)$
= $\arg \max_{W} \operatorname{Tr}(U\Sigma V^{\mathsf{T}}W) \quad [U\Sigma V^{\mathsf{T}} = \operatorname{SVD}(Z^{\mathsf{T}}D^{\mathsf{T}}X)]$
= $\arg \max_{W} \operatorname{Tr}(\Sigma V^{\mathsf{T}}WU)$
= VU^{T}

Method	English-German	English-Italian	English-Finnish
Artetxe et al. (2017)	40.27	39.40	26.47
Artetxe et al. (2017)+id	51.73	44.07	42.63
Embedding extension	50.33	48.40	29.63
Embedding extension+id	55.40	47.13	43.54
Edit distance	43.73	39.93	28.16
Edit distance+id	52.20	44.27	41.99
Combined	53.53	49.13	32.51
Combined+id	55.53	46.27	41.78