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Semantic Role Labeling (SRL)

* Find out “who did what to whom™ in text
® Capture predicate-argument structures
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SRL as BIO Tagging
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Needs target predicate as input!

(Prior works typically used gold predicates)
Collobert et al., 2011,
/Zhou and Xu, 2015,
He et. al, 2017,
Inter alia
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Needs to re-run the tagger for each predicate
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SRL as Predicting Word-Span Relations

Many tourists||visitj|Disney| to meetl their favorite cartoon characters




SRL as Predicting Word-Span Relations
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Many tourists||visitj|Disney| to |meef|their favorite cartoon characters

Advantages:
* Jointly predict predicates

* Span-level features
(similar to Punyakanok08, FitzGerald15, inter alia)

Challenge:
* Too many possible edges (n2 argument spans x n predicates)



Our Model



Our Model: Overview
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Our Model: Overview
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Our Model: Overview
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Our Model: Overview

) (2) Local classifier over labels (including NULL)
Label
I'Aﬁ\ for all possible (predicate, argument) pairs
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(2) Local Label  (3) Span

(1) Span Representations Classifiors Pruning

their favorite cartoon
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Input sentence Many tourists visit Disney to meet their favorite cartoon characters

(Same as Lee et al., 2017)
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(1) Span Representations

LSTM boundary points BILSTM(w1 : Wy )srarr, BILSTM (w1 : Wy )Exp)

their favorite cartoon
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(2) Local Label  (3) Span

(1) Span Representations Classifiors Pruning
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(1) Span
Representations
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(2) Local Label Classitiers

Input sentence Many tourists visit Disney to meet their favorite cartoon characters
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(1) Span
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(2) Local Label Classitiers
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(2) Local Label Classitiers
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(2) Local Label Classitiers
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¢(pred, arg, ) = @, (arg) + P, (pred) + CIDI(,i)l(a,rg, pred)

R

——

¢(“Many tourists”, “meet”,¢) =0

¢(“Many tourists”, “meet”, ARGO)

ARGO
(I)1("e1 )

VYA

(“Many tourists”, “meet”)

VA4

(“Many tourists”, “meet” )

Edge score

Pred./Arg. ¢, (“Many tourists”)
score

Span
Representation

Many tourists meet

18



(1) Span (2) Local Label (3) Span Pruning
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(1) Span (2) Local Label
Representations Classifiers

(3) Span Pruning
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Results & Analysis
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End-to-End SRL Results
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F1

End-to-End SRL Results

B Hel7 B Ours . Hel17 (Ensemble) B Ours+ELMo

CoNLO05 WSJ Test CoNLO5 Brown Test CoNLL2012 (OntoNotes)

With ELMo, over 3 points improvement over SotA ensemble!

*ELMo: Deep Contextualized Word Representations, Peters et al., 2018
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Span-based vs. BIO

BIO Span-based
(He17) (this work)

Inputs (Sentence, Sentence
P Predicate)
Predicate |dentification Pipelined Joint

Global Consistency

Long-range Dependency
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Span-based vs. BIO

BIO Span-based
(He17) (this work)

Inputs (Sentence, Sentence
P Predicate)
p Due to the strong independence ’ipelined Joint

assumption we make.

Global Coni By allowing direct interaction
between predicates and arguments

Long-range Dependency
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Conclusion

e Joint prediction of predicates and arguments
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Conclusion

e Joint prediction of predicates and arguments

e Qur recipe:

1. Contextualized span
representations

2. Local label classifiers

3. Greedy span pruning @%%%
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Conclusion

e Joint prediction of predicates and arguments
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e Qur recipe:

1. Contextualized span
representations

2. I_Ocal |abe| ClaSSifierS o D8 o0 OO D0 D DO DO D8 DY
3. Greedy span pruning & Wﬁ

e Future work: Improve global consistency, use span
representations for downstream tasks, etc.
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THANK YOU!

Code and pertained models:
https://github.com/luheng/lsgn

'%%%%%%%%%b
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