

Leveraging distributed representations and lexico-syntactic fixedness for token-level prediction of the idiomaticity of English verb-noun combinations

Milton King and Paul Cook University of New Brunswick Fredericton, Canada

Multiword Expressions

- Expressions of multiple words that can exhibit an idiomatic meaning
 - Ivory tower
 - Hit up
 - Take a walk
- Verb noun combinations
 - See stars
 - Kick the bucket

Idiomatic vs Literal

- Pull plug
 - (I) They <u>pulled</u> the <u>plug</u> on the Department of Health funding
 - (L) Unfortunately someone <u>pulled</u> the sink <u>plug</u>
- See stars
 - (I) It caught him on the head and he went down seeing little sparkling <u>stars</u>
 - (L) It's still dark enough to see the brightest stars

Idiom Token Classification

• Determine if an MWE instance is idiomatic

- They <u>pulled</u> the <u>plug</u> on the project \Rightarrow [Idiomatic/Literal]

- Applications
 - Machine translation
 - Kick the bucket **→** [mourir/frapper avec le pied]
 - Sentence completion
 - Keegan is ready to <u>pull</u> the <u>plug</u> on [a deal / the tv]

Overview of Approach

- Supervised approach
- VNC token instances are represented via use of an embedding model
- Embedding models
 - Skip-thoughts
 - Word2vec
 - Siamese CBOW
- SVM classifier

Lexico-Syntactic Fixedness

- The idiomatic meaning of an expression is typically restricted to a small number of lexico-syntactic patterns
- See star (Idiomatic)
 - Active voice, no determiner, plural noun

• See stars

- See star (Literal)
 - Active voice, determiner, singular noun
 - See a star
 - Passive voice, plural noun
 - Stars were seen

Patterns

Pattern No.	Pattern Signature		re	Example		
1	v_{act}	det:NULL	n _{sg}	give money		
2	v_{act}	det:a/an	n_{sg}	give a book		
3	v_{act}	det: <i>the</i>	n_{sg}	give the book		
4	v_{act}	det:DEM	n_{sg}	give this book		
5	v_{act}	det:POSS	n_{sg}	give my book		
6	v_{act}	det:NULL	n_{pl}	give books		
7	v_{act}	det: <i>the</i>	n_{pl}	give the books		
8	v_{act}	det:DEM	n_{pl}	give those books		
9	v_{act}	det:POSS	n_{pl}	give my books		
10	v_{act}	det:OTHER	$n_{sg,pl}$	give many books		
11	v_{pass}	det:ANY	n _{sg,pl}	a/the/this/my book/books was/were given		

Afsaneh Fazly et al. 2009

Canonical Form

 Lexico-syntactic patterns that idiomatic usages tend to occur in

$$\mathcal{C}(v, n) = \{pt_k \in \mathcal{P} \mid z(v, n, pt_k) > T_z\}$$

$$z(v, n, pt_k) = \frac{f(v, n, pt_k) - f}{s}$$

Afsaneh Fazly et al. 2009

Integrating Canonical Forms

 Unsupervised method used in Fazly et al. to identify canonical forms

• One-dimensional binary vector representing if the expression is in the canonical form

VNC-Tokens Dataset

Cook et al. 2008

- Dev
 - 14 MWEs
 - Training
 - 270 Idiom
 - 179 Literal
 - Testing
 - 92 Idiom
 - 53 Literal

- Test
 - 14 MWEs
 - Training
 - 298 Idiom
 - 172 Literal
 - Testing
 - 90 Idiom
 - 53 Literal

Accuracy

Model	DI	ΞV	TEST		
WIGUEI	-CF	+CF	-CF	+CF	
CForm	-	0.721	-	0.749	
Word2vec	0.830	0.854	0.804	0.852	
Siamese CBOW	0.763	0.774	0.717	0.779	
Skip-thoughts	0.803	0.827	0.786	0.842	

Results per class

Model	Idiomatic			Literal			
WICUEI	Р	R	F	Р	R	F	
Word2vec -CF	0.815	0.879	0.830	0.627	0.542	0.556	
Word2vec +CF	0.830	0.892	0.848	0.758	0.676	0.691	

Conclusion

- Averaging word2vec embeddings outperforms all other models used
- Canonical form feature improves results
- Future work
 - Unseen MWEs
 - Other embedding models

Thank you

This work was financially supported by NSERC, NBIF, and University of New Brunswick

Results per class

Model	Idiomatic				Literal			
WIGGET	Р	R	F		Р	R	F	
CForm	0.766	0.901	0.794		0.668	0.587	0.576	
Word2vec -CF	0.815	0.879	0.830		0.627	0.542	0.556	
Word2vec +CF	0.830	0.892	0.848		0.758	0.676	0.691	