

- candidate.
- in the past.

$$score(y) = \frac{1}{|y|^{\lambda}} \log p(y|X) + \alpha \operatorname{PG}(y) + \beta \operatorname{LMP}(y)$$
progress penalty
$$\operatorname{PG}(y) = \begin{cases} 0 & \text{if } y \text{ finished} \\ \frac{|y|^{\gamma}}{|X|^{\gamma}} & \text{otherwise} \end{cases} \operatorname{LMP}(y) = \begin{cases} 0 & \text{if } y \\ \operatorname{I}(\operatorname{H}(p_x^l, p_y^l) > \tau) & \text{otherwise} \end{cases}$$

$$\operatorname{LMP}(y) = \begin{cases} 0 & \text{if } y \\ \operatorname{I}(\operatorname{H}(p_x^l, p_y^l) > \tau) & \text{otherwise} \end{cases}$$

$$\operatorname{H}(p_x^l, p_y^l) = \frac{1}{2} \log(2\pi\sigma_y^2) + \frac{\sigma_x^2 + (\mu_y - \mu_x)^2}{2\pi\sigma_y^2}$$

- - : the Gaussian of expected output length if continue to decode current hypothesis

Improving Beam Search by Removing Monotonic Constraint **for Neural Machine Translation** Raphael Shu and Hideki Nakayama The University of Tokyo

	Test BLEU(%)			
	BS=3	BS=5	BS=8	BS=12
// LN	37.69	37.93	38.26	38.38
/ PG	38.18	38.68	38.98	39.02
LMP	38.37	38.73	38.89	38.98

(beam size = 2)

text

