Hybrid semi-Markov CRF for Neural Sequence Labeling

Background

Sequence labeling is a type of pattern recognition task that involves the algorithmic assignment of a categorical label to each member of a sequence of observed values.

Take named entity recognition as an example: sentence:

Barack Obama was born in Hawaii.

CRF-style(word-level) label: B-PER I-PER O O O B-LOC

HSCRF-style(segment-level) label: (1,2,PER) (3,3,0) (4,4,0) (5,5,0) (6,6,LOC)

Contributions

- \star Propose the Hybrid semi-Markov CRF (HSCRF) architecture which employs both word-level and segment-level labels for segment score calculation.
- ★ Propose a joint CRF-HSCRF training framework and a naive joint decoding algorithm for neural sequence labeling.

 \bigstar The proposed model achieves state-of-the-art performance in CoNLL 2003 NER shared task without external knowledge.

Source code available!!!

https://github.com/ZhixiuYe/HSCRF-pytorch

Our implementation is based on python and the **PyTorch** library.

Zhi-Xiu Ye, Zhen-Hua Ling University of Science and Technology of China

A comparison between CRFs and HSCRFs

1. Input data

- a Input sentence $\mathbf{x} = \{x_1, ..., x_n\}$
- b Word-level label: $\mathbf{y} = \{y_1, ..., y_n\}$
- c Segment-level label: $\mathbf{s} = \{s_1, s_2, ..., s_p\}$

a, b for CRFs and a, b, c for HSCRFs.

2. Word-level representations

CRFs and HSCRFs share the same word representations

 $\boldsymbol{w}_i = \mathrm{BLSTM}(\boldsymbol{e}_i),$

where e_i is the word embedding of x_i .

3. Score computation

- In **CRFs**, we compute the score of **word**-level label m_i via the representation of i-th word w_i .
- In **HSCRFs**, the score of **segment**-level label m_i is computed by the summation of the scores of the word-level label.

Joint training and decoding

1. Training

- A CRF output layer and a HSCRF output layer are **integrated** into an unified neural network.
- The model parameters are **shared** and optimized by minimizing the **summation** of the loss functions of the CRF layer and the HSCRF layer with equal weights as follows:

 $loss = loss_{CRF} + loss_{HSCRF}$

2. Decoding

- Two label sequences, \mathbf{s}_c and \mathbf{s}_h , for an input sentence can be obtained using the CRF output layer and the HSCRF output layer respectively.
- Choose the one between \mathbf{s}_c and \mathbf{s}_h with lower loss as the final result.

Dataset: CoNLL 2003 shared task: English named entity recognition.

Table 1: Model performance (F1 score) on CoNLL 2003 NER task for entities with different lengths, where LM for language model¹, GSCRF for grSemi-CRF², JNT for our proposed joint model.

CN
\mathbf{LN}

Experiments

Model	Entity Length						
Iviouei	1	2	3	4	5	≥ 6	all
LM-BLSTM-CRF	91.68	91.88	82.64	75.81	73.68	72.73	91.17
LM-BLSTM-GSCRF	91.57	91.68	83.61	74.32	76.64	73.64	91.06
LM-BLSTM-HSCRF	91.65	91.84	82.97	76.20	78.95	74.55	91.27
LM-BLSTM-JNT(JNT)	91.73	92.03	83.78	77.27	79.66	76.55	91.38

Table 2: Comparison with existing works

Model	Test Set F1 Score			
model	Type	Value $(\pm std)$		
Zhuo et al. (2016)	reported	88.12		
Lample et al. (2016)	reported	90.94		
Ma and $Hovy(2016)$	reported	91.21		
$\operatorname{Rei}(2017)$	reported	86.26		
Liu et al. (2018)	mean	91.24 ± 0.12		
Liu et al. (2018)	max	91.35		
IN-BLSTM-JNT(JNT)	mean	91.26 ± 0.10		
	max	91.41		
M-BLSTM-JNT(JNT)	mean	$91.38 {\pm}~0.10$		
	max	91.53		

¹Empower Sequence Labeling with Task-Aware Neural Language Model. ²Segment-level sequence modeling using gated recursive semi-Markov conditional random fields

Figure 2: HSCRFs with neural networks

• Word-level labels may supervise models to learn word-level descriptions which tend to benefit the recognition of **short** entities.

• Segment-level labels may guide models to capture the descriptions of combining words for whole entities which help to recognize **long** entities.

• By utilizing **both** labels, the proposed joint model can achieve better overall performance of recognizing entities with different lengths.