
Hybrid semi-Markov CRF for Neural Sequence Labeling
Zhi-Xiu Ye, Zhen-Hua Ling

University of Science and Technology of China

Background
Sequence labeling is a type of pattern recognition
task that involves the algorithmic assignment of a
categorical label to each member of a sequence of
observed values.
Take named entity recognition as an example:
sentence:

Barack Obama was born in Hawaii.

CRF-style(word-level) label:
B-PER I-PER O O O B-LOC

HSCRF-style(segment-level) label:
(1,2,PER) (3,3,O) (4,4,O) (5,5,O) (6,6,LOC)

Contributions
F Propose the Hybrid semi-Markov CRF

(HSCRF) architecture which employs both
word-level and segment-level labels for segment
score calculation.

F Propose a joint CRF-HSCRF training
framework and a naive joint decoding algo-
rithm for neural sequence labeling.

F The proposed model achieves state-of-the-art
performance in CoNLL 2003 NER shared task
without external knowledge.

Source code available!!!
https://github.com/ZhixiuYe/HSCRF-pytorch

Our implementation is based on python and the
PyTorch library.

A comparison between CRFs and HSCRFs
1. Input data

a Input sentence x = {x1, ..., xn}
b Word-level label: y = {y1, ..., yn}
c Segment-level label: s = {s1, s2, ..., sp}

a, b for CRFs and a, b, c for HSCRFs.
2. Word-level representations
CRFs and HSCRFs share the same word represen-
tations

wi = BLSTM(ei),
where ei is the word embedding of xi.
3. Score computation

• In CRFs, we compute the score of word-level la-
bel mi via the representation of i-th word wi.

• In HSCRFs, the score of segment-level label mi

is computed by the summation of the scores of the
word-level label.

Figure 1: CRFs with neural networks

mCRFi = ϕc(yk,wk) = a>yk
wk

Figure 2: HSCRFs with neural networks
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Joint training and decoding
1. Training

• A CRF output layer and a HSCRF output layer
are integrated into an unified neural network.

• The model parameters are shared and optimized
by minimizing the summation of the loss func-
tions of the CRF layer and the HSCRF layer with
equal weights as follows:

loss = lossCRF + lossHSCRF

2. Decoding

• Two label sequences, sc and sh, for an input
sentence can be obtained using the CRF output
layer and the HSCRF output layer respectively.

• Choose the one between sc and sh with lower
loss as the final result.

Experiments
Dataset: CoNLL 2003 shared task: English named entity recognition.

Table 1: Model performance (F1 score) on CoNLL 2003 NER task for entities with different lengths, where LM
for language model1, GSCRF for grSemi-CRF2, JNT for our proposed joint model.

Model Entity Length
1 2 3 4 5 ≥ 6 all

LM-BLSTM-CRF 91.68 91.88 82.64 75.81 73.68 72.73 91.17
LM-BLSTM-GSCRF 91.57 91.68 83.61 74.32 76.64 73.64 91.06
LM-BLSTM-HSCRF 91.65 91.84 82.97 76.20 78.95 74.55 91.27

LM-BLSTM-JNT(JNT) 91.73 92.03 83.78 77.27 79.66 76.55 91.38

Table 2: Comparison with existing works

Model Test Set F1 Score
Type Value (±std)

Zhuo et al.(2016) reported 88.12
Lample et al.(2016) reported 90.94
Ma and Hovy(2016) reported 91.21

Rei(2017) reported 86.26

Liu et al.(2018) mean 91.24 ± 0.12
max 91.35

CNN-BLSTM-JNT(JNT) mean 91.26 ± 0.10
max 91.41

LM-BLSTM-JNT(JNT) mean 91.38± 0.10
max 91.53

• Word-level labels may supervise models to learn
word-level descriptions which tend to benefit the
recognition of short entities.

• Segment-level labels may guide models to cap-
ture the descriptions of combining words for whole
entities which help to recognize long entities.

• By utilizing both labels, the proposed joint model
can achieve better overall performance of recogniz-
ing entities with different lengths.

1Empower Sequence Labeling with Task-Aware Neural Language Model.
2Segment-level sequence modeling using gated recursive semi-Markov con-
ditional random fields.


