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BACKGROUND

Natural languages are constantly evolv-
ing and adapting to the needs of their users
and the environment of their use. Diachronic ‘ I
~
B

Predictive
language
models

differences measure semantic drift specifi-
cally for languages over time.

4. Compare:

2. Build predictive models of age and a) Cross-year model performance
gender from language features of b) Cross-cohort model performance
2011... 2015 ¢) Change in feature importance

1. Because of diachronic ditferences, pre- Qualircs survey participants report
dictive models trained on language age, gender and Twitter handles

may go stale'.
2. No existing work has investigated Language
whether, and how, language models Features

5. Validate:
d) Measure semantic distance
e) Compare concept connotations

1. Transform into probabilistic | topic features

degrade over time.
(source: Schwartz et al., 2013)
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Supervised language models trained on X Year Year . b
user tr aitS can degrade in Per formance over US-geolocated tweets from the Twitter Decahose

time. We explore the extent of the degrada- (courtesy: the TrendMiner Project)

tion by evaluating X 3. Build word embeddings from the

Twitter 10% tweets of 2011... 2015

1. The predictive performance of lan-
guage models trained at one point in 1. We establish the diachronic validity of language-based models through predictive eval-

uations, and also compare against [1].

2. We use topic models and word embeddings to study the diachronic differences in the
language of social media users, using methods described in [2].

3. We use linear methods to interpret diachronic differences in user trait prediction as the
differences between standardized coetficients in the language models.

time, in a subsequent time period

2. The implications of diachronic differ-
ences in language use on Twitter

1. 150,000 Twitter posts shared after in-
formed consent by 554 adults in the RESULTS
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. The language of each cohort of 35-year-
olds changes little over the previous

year. CONCLUSION

. Over time, young users from 2011 con-
tinued to use certain topics, while older
users adopted newer trends.

. A part of the language drift appeared
because 1/5" of the population was
shifting along the temporal axis.

. Language models degrade over time!

. The language of social media posts can be used to study semantic drift over short periods
of time, even from small datasets.

. There is a need to disentangle which differences are due to the changing use of language
from the ones due to changes in topics and trends.

. Domain adaptation techniques can potentially resolve diachronic performance
differences
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