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Introduction

Coreference resolution aimsto identify in a text all
mentions that refer to the same real world entity. The
state-of-the-art end-to-end neural coreference model
considers all text spans in a document as potential
mentions and learns to link an antecedent for each
possible mention. In this paper, we propose to improve
the end-to-end coreference resolution system by

(1) using a biaffine attention model to get antecedent
scores for each possible mention,

(2) jointly optimizing the mention detection accuracy and
the mention clustering log-likelihood given the
mention cluster labels.

Our model achieves the state-of-the-art performance on
the CoNLL-2012 Shared Task English test set.

Our method

Span Representation. We adopt the same span
representation approach as in Lee et al. (2017), using
bidirectional LSTMs. Then, the head-finding attention
computes a score distribution over different words in a
span. To construct span representation, we encode both
contextual information and internal structure of spans,
and a feature vector for the span size.

s; = [hsart(s) henp(i), Wi—4™, ¢(i)]

Mention Scoring. The span representation is input to a
feed forward network which measures if it is an entity
mention using a score m(i):

m(i) = vl FFNN(s;)

Biaffine Attention Antecedent Scoring. For antecedent
scoring, we propose a biaffine attention model (Dozat
and Manning, 2017) to produce distributions of possible
antecedents:
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Figure 1: Model architecture. We consider all text spans up to 10-word length as possible mentions. For
brevity, we only show three candidate antecedent spans (“Drug Emporium Inc.”, “Gary Wilber”, “was
named CEQ”) for the current span “this drugstore chain”.
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Inference. The final coreference score s(i, j) forspan si and span sj consists of three terms:

(1)if siis a mention, (2) if sjis a mention, (3) if sj is an antecedent for si. Furthermore, for
dummy antecedent, we fix the final score to be O:

m(i) +m(j) +c(i,7), JFe
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Joint Mention Detection and Mention Cluster. Our training data only provides gold mention
cluster labels. To make best use of this information, we propose to jointly optimize the mention
scoring and antecedent scoring in our loss function.
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Experimental Results

P R F1 P R F1 P R F1

Avg. F1
Our work (5-model ensemble) 82.1 73.6 776 731 620 67.1 67.5 59.0 629 69.2
Lee et al. (2017) (5-model ensemble) 81.2 73.6 772 723 61.7 666 652 60.2 62.6 68.8

Our work (single model) 794 738 765 690 623 655 649 583 614 67.8
Lee et al. (2017) (single model) 784 734 758 686 618 650 62.7 59.0 60.8 67.2
Clark and Manning (2016a) 79.2 704 746 699 580 634 635 555 592 65.7
Clark and Manning (2016b) 799 693 742 710 565 63.0 638 543 58.7 65.3
Wiseman et al. (2016) 775 698 734 668 570 615 62.1 539 57.7 64.2
Wiseman et al. (2015) 762 693 726 662 558 605 594 549 571 63.4
Clark and Manning (2015) 76.1 694 726 656 560 604 594 53.0 56.0 63.0
Martschat and Strube (2015) 76.7 68.1 722 66.1 542 596 595 523 557 62.5
Durrett and Klein (2014) 72.6 699 712 612 564 587 562 542 552 61.7
Bjorkelund and Kuhn (2014) 743 67.5 70.7 6277 550 586 594 523 556 61.6
Durrett and Klein (2013) 729 659 692 636 525 575 543 544 543 60.3

Table 1: Experimental results on the CoNLL-2012 Englisth test set. The F1 improvements are statistical
significant with p < 0.05 under the paired bootstrap resample test (Koehn, 2004) compared with Lee
et al. (2017).
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In Table 1, we compare our model with previous
state-of-the-art systems on the CoNLL-2012 ?
Shared Task English data. We obtain the best )
results in all F1 metrics. Our single model

achieves 67.8% F1 and our 5-model ensemble =
achieves 69.2% F1. In particular, compared

with Lee et al. (2017), our improvement mainly
results from the precision scores. This indicates
that the mention detection loss does produce
better mention scores and the biaffine attention = o = w
more effectively determines if two spans are Spen e

coreferent.
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Figure 2: Mention detection subtask on develop-
ment set. We plot accuracy and frequency break-

Mention Detection Analysis down by span widths.

To further understand our model, we perform a mention detection subtask where spans with
mention scores higher than 0 are considered as mentions. We show the mention detection
accuracy breakdown by span widths in Figure 2. Our model indeed performs better thanks
to the mention detection loss. The advantage is even clearer for longer spans which consist
of 5 or more words. Here are some examples of unseen mentionsin test set which our
model can correctly detect but Lee et al. (2017) cannot:

(1) a suicide murder (2) Hong Kong Island
(3) a US Airforce jet carrying robotic undersea vehicles
(4) the investigation into who was behind the apparent suicide attack

This shows that our mention loss helps detection by generalizing to new mentions rather
than memorizing the existing mentions in training data.



