TOWARDS ROBUST AND PRIVACY-PRESERVING TEXT REPRESENTATIONS

1. Introduction

Background: Written text often provides clues to identity
the author, their gender, age, and other important at-
tributes. As a result, the authorship of training and eval-
uation corpora can have unforeseen consequences, in-
cluding ditfering model performance for different user
groups, as well as privacy implications.

Aim:to learn un-biased representations which protect au-
thor’s attributes.

Our contribution: propose an approach to obscure im-
portant author characteristics at training time, such that
representations learned are invariant to these attributes.

2. A Trustpilot Attacker Example
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This is just one instance. What if we '
have more data of a user? L
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And identify who 0 are.
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vitongl4dstudent.unimelb.edu.au, {tbaldwin, tcohn}@unimelb.edu.au

Yitong Li, Timothy Baldwin, Trevor Cohn

3. Model Architecture
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® (x;,y;): a training instance with two protected attributes b; and b;;
e D'J(#%) = a discriminator, predicting the domain;

e red dashed and blue lines denote adversarial and standard loss.
o X' = cross-entropy loss.

Formulated as:

N
0 = I%lj\l}l {]g;ax X(y(x;01),y) — 221: Ai - X (b(x;0p), b;)

5. Sentiment Analysis

e BASELINE: word-level CNN
e Dataset: TrustPilot dataset derived from Hovy et al. (2015)

—Target variable: RATING ;_;
—Three attributes: gender (SEX pinary), age (AGE pinary), and location

(LOC (UsUK.GE.DE.FR})-
—Retrieve English reviews, and resample to balance LOC.

e Evaluation:

—RATING accuracy (higher is better) as main task performance,
—Discriminator accuracy (majority is better) as attacker.

F Discrim. [%]

dev test AGE SEX LOC

Majority class 57.8 62.3 20.0
BASELINE 41.9 40.1 65.3 66.9 534
ADV-AGE 42.7 40.1 61.1 65.6 41.0
ADV-SEX 42.4 39.9 61.8 62.9 42.7
ADV-LOC 42.0 40.2 62.2 66.8 22.1
ADV-all 42.0 40.2 61.8 62.5 28.1

e Our method can hide much of the personal information of users,
without affecting the sentiment task performance.

https://github.com/lrank/Robust_and
Privacy preserving Text_ Representations
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4. POS-tagging

e BASELINE: BI-LSTM trained on Web English Treebank (Bies et al.,
2012)

e Two evaluations: in-domain and out-of-domain.

1. TrustPilot English POS tagged dataset (Hovy and Segaard, 2015)

e experiment with two attributes:

—GENDER: female (F) and male (M)
— AGE: over-45 (0O45) and under-35 (U35)

Postag Acc [%] by Gender Postag Acc [%] by Age
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2. African-American Vernacular English (Jergensen et al., 2016)

e Three heterogeneous domains: LYRICS, SUBTITLES and TWEETS
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