
Pre- and In-Parsing Models for Neural Empty
Category Detection

Yufei Chen, Yuanyuan Zhao, Weiwei Sun and Xiaojun Wan

Institute of Computer Science and Technology
Peking University

Deep Linguistic Processing

▶ Combinatory Categorial Grammar, Lexical-Functional Grammar,
Head-Driven Phrase-Structure Grammar, etc.

▶ Government and Binding: D-structure VS S-structure

Question: Can we benefit from moding deep elements?

▶ Perhaps. Deep grammar formalisms provide more transparent interface to
semantics

▶ Hard to prove. Grammar Formalism are heterogeneous and hard to be
compared.

▶ Modeling empty category help dependency parsing.
▷ Our CoNLL paper: Zhang, Sun and Wan (2017)
▷ The dependency tree representation is augmented with empty nodes,
which corresponds to unpronounced nominal words

▷ Data-driven parsing based on global linear models

Question: How about neural models?

▶ Is is plausible to detect empty categories using RNNs rather than syntactic
information?

▶ Can neural parsing benefit from modeling empty categories?

Pre-parsing neural empty category detection

▶ Context of empty categories: sequential context and hierarchical context
▶ A sequence-oriented model: we explore four sets of annotation specifications
▶ Tagging based on a BiLSTM-CRF model.

Interspace: @@ 颁布(issue) @@ 了(AS) @@ 涉及(involve) @@ 经济(economic)
O VV O AS *OP**T* VV O NN

Pre2 and Pre3: 颁布(issue) 了(AS) 涉及(involve) 经济(economic)
VV AS VV#pre1=*T*#pre2=*OP* NN

Prepost: 颁布(issue) 了(AS) 涉及(involve) 经济(economic)
VV AS#post=*OP* VV#pre1=*T* NN

Figure 2: An example of four kinds of annotations. The phrase is cut out from the sentence in Figure 1.
”@@” means interspaces between words.

2.2 A Sequence-Oriented Model
In the sequence-oriented model, we formulate
ECD as a sequence labeling problem. In general,
we attach ECs to surrounding overt tokens to rep-
resent their identifications, i.e. their locations and
types. We explore four sets of annotation spec-
ifications, denoted as Interspace, Pre2, Pre3 and
Prepost, respectively. Following is the detailed de-
scriptions.

Interspace We convert ECs’ information into
different tags of the interspaces between words.
The assigned tag is the concatenation of ECs be-
tween the two words. If there is no EC, we just
tag the interspace as O. Specially, according to our
observation that only one EC occurs at the end of
the sentence in our data set, we simply count on
the heading space of sentences instead of the one
standing at the end. Assume that there are nwords
in a given sentence, then there will be 2 ∗ n items
(n words and n interspaces) to tag.

Pre2 and Pre3 We stick ECs to words following
them. In experiments using POS information, ECs
are attached to the POS of the next word, while
the normal words are just tagged with their POS.
In experiments without POS information, ECs are
straightly regarded as the label of the following
words. Words without ECs ahead are consistently
tagged using an empty marker. Similar to Inter-
space, linearly consecutive ECs are concatenated
as a whole. Pre2 means that at most two preceding
consecutive ECs are considered while Pre3 limits
the considered continuous length to three. The de-
termination of window lengths are grounded in the
distribution of ECs’ continuous lengths as shown
in Table 2.

Prepost Considering that it may be a challenge
to capture long-distance features, we introduce an-
other labeling rule called Prepost. Different from
Pre2 and Pre3, the responsibility for presenting
ECs will be shared by both the preceding and the

1 2 3 4
Train 7499 3702 142 5
Dev 530 233 10 0
Test 900 433 19 0

Table 2: The distribution of ECs’ continuous
lengths in training, development and test data.

following words. Whereas, tags heading sentences
will remain unchanged. Particularly, if the amount
of consecutive ECs in the current position is an
odd number, we choose to attach the extra EC to
the following word for consistency and clarity.

Take part of the sentence in Figure 1 as an ex-
ample. As described above, the four kinds of rep-
resentations are depicted in Figure 2. To investi-
gate the effect of POS in the tagging process, we
also conduct experiments by integrating POS to
the tagging process. For Interspace, POS tags are
individual output labels, while for other represen-
tations, the POS information is used to divide an
empty category integrated tag into subtypes.

2.3 Tagging Based on LSTM-CRF

In order to capture long-range syntactic informa-
tion for accurate disambiguation in pre-parsing
phase, we build a LSTM-CRF model inspired by
the neural network proposed in Ma and Hovy
(2016). A BiLSTM layer is set up on charac-
ter embeddings for extracting character-level rep-
resentations of each word, which is concatenated
with the pre-trained word embedding before feed-
ing into another BiLSTM layer to capture contex-
tual information. Thus we have obtained dense
and continuous representations of the words in
given sentences. The last part is to decode with
linear chain CRF which can optimize the out-
put sequence by factoring in local characteristics.
Dropout layers both before and after the sentence-
level network serve to prevent over-fitting.

Figure 1: An example of four kinds of annotations.“@@” means interspaces between words.

Joint ECD and dependency parsing

▶ Notation
▷ a sentence s with n normal words
▷ Io = {(i , j)|i , j ∈ {1, · · · , n}}: all possible overt dependency edges
▷ Ic = {(i , ϕj)|i , j ∈ {1, · · · , n}}: all possible covert dependency
edges. ϕj denotes an empty node that precede the jth word.

▷ z = {z(i , j) : (i , j) ∈ Io ∪Ic}: a dependency parse with empty nodes

▶ Parsing with ECD can be defined as a search for the highest-scored z∗(s)
in all compatible analyses, just like parsing without empty elements:

z∗(s) = arg max
z∈Z(s)

Score(s, z)

= arg max
z∈Z(s)

∑
p∈Part(z)

ScorePart(s, p)

A second-order model

the score function over the whole syntactic analysis is defined as:
we define the score function in sentence s as fol-
lows,

SCOREDEP(s, i, j)
= W2 · g(W1,1 · ri + W1,2 · rj + b)

W2, W1,1 and W1,2 denote the weight matrices in
linear transformations. The score of covert edge
from word i to word φj is calculated in a similar
way with different parameters:

SCOREEMPTY(s, i, φj)
= W ′

2 · g(W ′
1,1 · ri + W ′

1,2 · rj + b′)

These non-linear transformations are also
known as Multiple Layer Perceptrons(MLPs). The
total score in our first-order model is defined as
follows,

SCORE(s, z) =
∑

(i,j)∈DEP(z)

SCOREDEP(s, i, j)

+
∑

(i,φj)∈DEPEMPTY(z)

SCOREEMPTY(s, i, φj)

DEP(z) and DEPEMPTY(z) denote all overt
and covert edges in z respectively. Because each
overt and covert edge is selected independently
of the others, the decoding process can be seen
as calculating the maximum subtree from overt
edges(we use Eisner Algorithm in our experi-
ments) and appending each covert edge (i, φj)
when SCOREEMPTY(i, φj) > 0.

3.4 A Second-Order Model
In the second-order model, we also consider sib-
ling arcs. We extend the neural network in sec-
tion 3.3 to perform the second-order parsing. We
calculate second-order scores(scores defined over
sibling arcs) in a similar way. Each pair of overt
sibling arcs, for example, (i, j) and (i, k) (j < k),
is denoted as (i, j, k) and scored with a non-linear
transformation.

SCOREOVERTBOTH(s, i, j, k) =

W ′′
2 · g(W ′′

1,1 · ri +W ′′
1,2 · rj +W ′′

1,3 · rk + b′′)

Zhang et al. (2017b) defines two kinds of
second-order scores to describe the interaction be-
tween concrete nodes and empty categories: the
covert-inside sibling (i, φj , k) and covert-outside
sibling (i, j, φk). Their scores can be calculated in
a similar way with different parameters.

And finally, the score function over the whole
syntactic analysis is defined as:

SCORE(s, z) =
∑

(i,j)∈DEP(z)

SCOREDEP(s, i, j)

+
∑

(i,φj)∈DEPEMPTY(z)

SCOREEMPTY(s, i, φj)

+
∑

(i,j,k)∈OVERTBOTH(z)

SCOREOVERTBOTH(s, i, j, k)

+
∑

(i,φj ,k)∈COVERTIN(z)

SCORECOVERTIN(s, i, φj , k)

+
∑

(i,j,φk)∈COVERTOUT(z)

SCORECOVERTOUT(s, i, j, φk)

OVERTBOTH(z), COVERTIN(z) and
COVERTOUT(z) denotes overt-both, covert-
inside and covert-outside siblings of z respec-
tively. Totally 5 MLPs are used to calculate the 5
types of scores. The network structure is shown in
Figure 3.

Labeled Parsing Similar to Kiperwasser and
Goldberg (2016) and Zhang et al. (2017a), we
use a two-step process to perform labeled parsing:
conduct an unlabeled parsing and assign labels to
each dependency edge. The labels are determined
with the nonlinear classification. We use different
nonlinear classifiers for edges between concrete
nodes and empty categories.

Training In order to update graphs which have
high model scores but are very wrong, we use a
margin-based approach to compute loss from the
gold tree T ∗ and the best prediction T̂ under the
current model.

We define the loss term as:

max(0,∆(T ∗, T̂)− SCORE(T ∗) + SCORE(T̂))

The margin objective ∆ measures the similarity
between the gold tree T ∗ and the prediction T̂ .
Following Kiperwasser and Goldberg (2016)’s ex-
perience of loss augmented inference, we define
∆ as the count of dependency edges in prediction
results but not belonging to the gold tree.

3.5 Structure Regularization
ECD significantly increases the search space for
parsing. This results in a side effect for practi-
cal parsing. Given the limit of available anno-
tations for training, searching for more complex
structures in a larger space is harmful to the gen-
eralization ability in structured prediction (Sun,

The score functions

3 In-Parsing Detection

Zhang et al. (2017b) designs novel algorithms to
produce dependency trees in which empty ele-
ments are allowed. Their results show that inte-
grating empty categories can augment the pars-
ing of overt tokens when structured perceptron, a
global linear model, is applied for disambiguation.
From a different perspective, by jointing ECD and
dependency parsing, we can utilize full syntactic
information in the process of detecting ECs. Paral-
lel to their work, we explore the effect of ECD on
the neural dependency based parsing in this sec-
tion.

3.1 Joint ECD and Dependency Parsing
To perform ECD and dependency parsing in a uni-
fied framework, we formulate the issue as an op-
timization problem. Assume that we are given a
sentence s with n normal words. We use an in-
dex set Io = {(i, j)|i, j ∈ {1, · · · , n}} to de-
note all possible overt dependency edges, and use
Ic = {(i, φj)|i, j ∈ {1, · · · , n}} to denote all
possible covert dependency edges. φj denotes an
empty node that precede the jth word. Then a de-
pendency parse with empty nodes can be repre-
sented as a vector:

z = {z(i, j) : (i, j) ∈ Io ∪ Ic}.

Let Z denote the set of all possible z, and
PART(z) denote the factors in the dependency
tree, including edges (and edge siblings in the
second-order model). Then parsing with ECD can
be defined as a search for the highest-scored z∗(s)
in all compatible analyses, just like parsing with-
out empty elements:

z∗(s) = arg max
z∈Z(s)

SCORE(s, z)

= arg max
z∈Z(s)

∑
p∈PART(z)

SCOREPART(s, p)

The graph-based parsing algorithms proposed
by Zhang et al. are based on two properties: ECs
can only serve as dependents and the number of
successive ECs is limited. The latter trait makes
it reasonable to treat consecutive ECs governed by
the same head as one word. We also follow this
set-up.

3.2 Scoring Based on BiLSTM
Kiperwasser and Goldberg (2016) proposed a sim-
ple yet effective architecture to implement neural

Bi-LSTMs

Embedding

i

It PRP

. . .

. . .

Bi-LSTMs

Embedding

j

Black NNP

Bi-LSTMs

Embedding

j + 1

Monday NNP

. . .

. . .

MLPovert edge

SCOREDEP(i, j)

MLPcovert edge

SCOREEMPTY(i, φj+1)

MLPovert both sibling

SCOREOVERTBOTH(i, j, j + 1)

Figure 3: The neural network structure when pars-
ing sentence ”It wasn’t Black Monday.” 5 MLPs
is used for overt edges (i, j), covert edges (i, φj),
overt-both siblings (i, j, k), covert-inside siblings
(i, φj , k) and covert-outside siblings (i, j, φk) re-
spectively, and 3 of them are shown in the graph.

dependency parsers. In particular, a BiLSTM is
utilized as a powerful feature extractor to assist
a dependency parser. Mainstream data-driven de-
pendency parsers, including both transition- and
graph-based ones, can apply useful word vec-
tors provided by a BiLSTM to conduct the dis-
ambiguation. Following Kiperwasser and Gold-
berg (2016)’s experience on graph-based depen-
dency parser, we implement such a parser to re-
cover empty categories and to evaluate the impact
of empty categories on surface parsing.

Here we present details of the design of our
parser. A vector is associated with each word or
POS-tag to transform them into continuous and
dense representations. We use pre-trained word
embeddings and random initialized POS-tag em-
beddings.

The concatenation of the word embedding and
the POS-tag embedding of each word in a specific
sentence is used as the input of BiLSTMs to ex-
tract context related feature vectors ri.

r1:n = BiLSTM(s; 1 : n)

The context related feature vectors are fed into
a non-linear transformation to perform scoring.

3.3 A First-Order Model
In the first-order model, we only consider the head
and the dependent of the possible dependency arc.
The two feature vectors of each word pair is scored
with a non-linear transformation g as the first-
order score. When words i and j are overt words,

Figure 2: The neural network structure when parsing sentence ”It wasn’t Black Monday.” 5

MLPs is used for overt edges (i , j), covert edges (i , ϕj), overt-both siblings (i , j , k), covert-
inside siblings (i , ϕj, k) and covert-outside siblings (i , j , ϕk) respectively, and 3 of them are

shown in the graph.

Overall results

P R F1
Pre-parsing 67.3 54.7 60.4
In-parsing 72.6 55.5 62.9
In-parsing* 70.9 54.1 61.4
Xue and Yang (2013)* 65.3 51.2 57.4
Cai et al. (2011) 66.0 54.5 58.6

Table 1: The overall performance on test data. ”*” indicates more stringent evaluation metrics.

Empty category helps neural parsing

−EC +EC −+EC
Unlabeled 87.6 88.9 89.6
Labeled 84.6 85.9 86.6

Table 2: Accuracies of both unlabeled and labeled parsing on development data. “−EC”

indicates parsing without empty categories. “+EC” indicates the second-order in-parsing models.

“−+EC” indicates jointing parsing models both without and with ECs together.

LSTM is able to find some non-local dependencies

Linear CRF LSTM-CRF
Without POS With POS Without POS With POS
P R F1 P R F1 P R F1 P R F1

Interspace 74.6 20.6 32.2 71.2 30.3 42.5 67.9 59.8 63.6 73.0 61.6 66.8
Pre2 72.4 30.1 42.5 72.8 32.4 44.8 71.1 58.3 64.1 74.8 57.4 65.0
Pre3 73.1 30.2 42.8 73.0 32.5 44.9 71.1 58.5 64.2 73.8 57.0 64.3
Prepost 70.9 32.9 45.0 74.4 30.3 43.1 71.0 57.6 63.6 72.9 58.6 65.0
Table 3: The overall performance of the two sequential models on development data.

Acknowledgments

This work was supported by the National Natural Science Foundation of
China (61772036, 61331011) and the Key Laboratory of Science,
Technology and Standard in Press Industry (Key Laboratory of Intelligent
Press Media Technology).

Contact Information

Email: {yufei.chen,ws,wanxiaojun}@pku.edu.cn

http://www.icst.pku.edu.cn/lcwm

{yufei.chen,ws,wanxiaojun}@pku.edu.cn
http://www.icst.pku.edu.cn/lcwm

