
A Implementation Details

We use bi-LSTMs (Hochreiter and Schmidhuber,
1997) for feature representations both at word and
sentence level. A 2-layer bi-LSTM takes input
from 64-dimensional character embeddings, and
encodes intra-token information into its 128 hid-
den units (64 for each direction). Another 2-layer
bi-LSTM builds sentence-level context-sensitive
features with the character LSTM encodings as in-
puts, and assigns a 192-dimensional vector repre-
sentation to each word in the sentence. All scor-
ing functions for the edges/transitions are in the
form of deep biaffine transformation (Dozat and
Manning, 2017). For feature sets with more than
two vectors, we define the score to be the sum of
pairwise biaffine scores. Scoring of tg,h,m, siu
in the baseline 1EC parser is defined as the sum
of biaffine scores of the follow pairwise interac-
tions: tg,mu, th,mu, tsi,mu. Sum of biaffine
scores for ts1, s0u and ts0,b0u constitute the
score for the three-vector feature set ts1, s0,b0u.
All neural-network weight parameters are ran-
domly initialized (Glorot and Bengio, 2010), in-
cluding the word and character embeddings. We
train each model using Adam optimizer (Kingma
and Ba, 2015) with initial learning rate 0.002, until
the dev-set performance converges. During train-
ing, dropout is applied to both multi-layer percep-
trons in the deep biaffine functions and the re-
current connections (Srivastava et al., 2014; Gal
and Ghahramani, 2016). We set the keep rate
to be 0.7 everywhere. Our implementation is
based on the DyNet library (Neubig et al., 2017).
Our code, including our re-implementation of the
third-order 1EC parser with neural scoring, is
available at https://github.com/tzshi/
mh4-parser-acl18.

References

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the 5th International Confer-
ence on Learning Representations.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems, pages 1019–1027.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th International

Conference on Artificial Intelligence and Statistics,
pages 249–256.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceed-
ings of the 4th International Conference on Learn-
ing Representations.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958.

https://github.com/tzshi/mh4-parser-acl18
https://github.com/tzshi/mh4-parser-acl18
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

