Cross-Domain Sentiment Classification with Target Domain Specific Information

Minlong Peng, Qi Zhang , Yu-gang Jiang, Xuanjing Huang

{mlpeng16, qz, ygj, xjhuang}@fudan.edu.cn

Introduction

In this work, we try to explore a path to use the target domain specific information with as few as possible target labeled data. Specifically, we first extract the domain invariant and domain specific features of target domain data. Then, we treat these two spaces as two different views of the target domain data and accordingly train a domain invariant classifier and a target domain specific classifier. Because the domain invariant space is compatible with both source data and target data, we train the domain invariant classifier with both source and target labeled data. And for the target domain specific classifier, we train it with target labeled data only. Based on these two classifiers, we perform co-training on target unlabeled data, which can further improve the usage of target data in a bootstrap style.

Affiliation

Thumbnail excellent delicious

Methods

Pseudocode

1.Extract domain invariant and target domain specific representation.

2. Train classifier F_c on invariant representation with **source and target** labeled data.

3. Train classifier F_t on target domain specific representation with **target** label data only.

4. Co-training F_c and F_t on target domain unlabeled data U_t .

Results

$S \rightarrow T$	Supervised Transfer		Unsupervised Transfer		Semi-supervised Transfer			
	SO	ST	CMD	DSN	CMD+ft	DSN+ft	CODA	CoCMD (p-value)
$B \rightarrow D$	81.7 ± 0.2	81.6 ± 0.4	82.6 ± 0.3	82.8 ± 0.4	$82.7 {\pm} 0.1$	$82.7 {\pm} 0.6$	81.9 ± 0.4	$83.1 \pm 0.1 (.003)$
$B \rightarrow E$	74.0 ± 0.6	$75.8 {\pm} 0.2$	81.5 ± 0.6	$81.9 {\pm} 0.5$	$82.4 {\pm} 0.6$	$82.3 {\pm} 0.8$	$77.5 {\pm} 2.0$	83.0 ±0.6(.061)
$B \rightarrow K$	$76.4{\pm}1.0$	$78.2 {\pm} 0.6$	84.4 ± 0.3	$84.4 {\pm} 0.6$	$84.7 {\pm} 0.5$	$84.8 {\pm} 0.9$	$80.4 {\pm} 0.8$	$85.3 \pm 0.7 (.039)$
$D \rightarrow B$	$79.5 {\pm} 0.3$	80.0 ± 0.4	$80.7 {\pm} 0.6$	80.1 ± 1.3	$81.0 {\pm} 0.7$	81.1 ± 1.2	$80.6 {\pm} 0.3$	$81.8 \pm 0.5 (.022)$
$D \rightarrow E$	75.6 ± 0.7	$77.0 {\pm} 0.3$	82.2 ± 0.5	81.4 ± 1.1	$82.5 {\pm} 0.7$	81.3 ± 1.2	$79.4 {\pm} 0.7$	$83.4 \pm 0.6 (.019)$
$D \rightarrow K$	79.5 ± 0.4	$80.4 {\pm} 0.6$	$84.8 {\pm} 0.2$	$83.3 {\pm} 0.7$	$84.5 {\pm} 0.9$	$83.8 {\pm} 0.8$	$82.4 {\pm} 0.5$	$85.5 \pm 0.8 (.055)$
$E \rightarrow B$	72.3 ± 1.5	$74.7 {\pm} 0.4$	$74.9 {\pm} 0.6$	$75.1 {\pm} 0.4$	$76.2 {\pm} 0.6$	76.3 ± 1.4	$73.6 {\pm} 0.7$	$76.9 \pm 0.6 (.094)$
$E \rightarrow D$	74.2 ± 0.6	75.4 ± 0.4	77.4 ± 0.3	$77.1 {\pm} 0.3$	$77.7 {\pm} 0.7$	77.1 ± 1.1	$75.9 {\pm} 0.2$	$78.3 \pm 0.1 (.079)$
$E \rightarrow K$	$85.6 {\pm} 0.6$	$85.7 {\pm} 0.7$	$86.4 {\pm} 0.9$	$87.2 {\pm} 0.7$	$86.7 {\pm} 0.3$	$87.1 {\pm} 0.9$	86.1 ± 0.4	87.3 ±0.4(.093)
К→В	73.1 ± 0.1	$73.8{\pm}0.3$	$75.8 {\pm} 0.3$	$76.4 {\pm} 0.5$	$76.4 {\pm} 0.5$	$76.2 {\pm} 0.3$	74.3 ± 1.0	$77.2 \pm 0.4 (.016)$
$K \rightarrow D$	$75.2{\pm}0.7$	$76.6 {\pm} 0.9$	77.7 ± 0.4	$78.0{\pm}1.4$	$78.8 {\pm} 0.4$	$78.5{\pm}0.5$	77.5 ± 0.4	$79.6 \pm 0.5 (.039)$
$K \rightarrow E$	$85.4{\pm}1.0$	85.3 ± 1.6	$86.7 {\pm} 0.6$	$86.7 {\pm} 0.7$	87.3±0.3	87.2 ± 0.4	$86.4 {\pm} 0.5$	$87.2 \pm 0.4 (.512)$
	•		1					
Source-only				CoCMD: Invariant		CoCMD: Specific		

