AdvEntuRe: Adversarial Training for **Textual Entailment with Knowledge-Guided Examples**

Dongyeop Kang, Tushar Khot, Ashish Sabharwal, Eduard Hovy

1. Summary

Motivation:

- Homogeneity of crowd-sourced dataset: (e.g., SNLI, SQUAD)
 - Limited linguistic variations (e.g., negation) & annotation artifacts (Gururangan et al., 18)
 - Homogeneity in learned models failing to cover long-tail patterns or linguistic phenomenon

Prediction (Parikh et al., 16)	Premis
	P : The dog did not eat all
entails (56.5%)	H : The dog ate all of the o
a_{1}	P : The red box is in the bl
entails (92.1%)	H : The blue box is in the r

Contributions:

Using large knowledge bases to capture common linguistic phenomena (e.g., WordNet)

- **GAN** framework to train a robust model
- Adversarial examples allow a **task-specific** but **model-independent** approach
- □ Effective in small/medium training data: +2.8% on SNLI (1%), +4.7% on SciTail (100%)
- Robustness to long-tail patterns: +6.1% on negation examples in SNLI

1		

e and Hypothesis

of the chickens.

chickens.

lue box.

red box.

Algorithm 1 Training procedure for ADVENTURE.

1: pretrain discriminator $\mathbb{D}(\hat{\theta})$ on **X**; 2: pretrain generators $\mathbb{G}_{c}^{s2s}(\hat{\phi})$ on **X**; 3: for number of training iterations do for mini-batch $B \leftarrow X$ do generate examples from \mathbb{G} $Z_G \Leftarrow \mathbb{G}(B; \phi),$ balance X and Z_G s.t. $|Z_G| \leq \alpha |X|$ optimize discriminator: $\theta = \operatorname{argmin}_{\theta} L_{\mathbb{D}}(X + Z_G; \theta)$ optimize generator: $\phi = \operatorname{argmin}_{\phi} L_{\mathbb{G}^{s2s}}(\mathcal{Z}_G; L_{\mathbb{D}}; \phi)$ Update $\theta \leftarrow \hat{\theta}; \phi \leftarrow \hat{\phi}$

> Adversarial training to create a *robust discriminator* (c.f. normal GAN for robust generator)

2. Creating
Example Type
Knowledge Base
Hand Rule Neural
Exampl (E.g. use <i>synor</i>
Original Premi
Original Predict S2S, S2S, S2S, Original Premotesis Original Premotesis PPDB, SICK, Word Net, Hand,
4. Evaluation \Box Dataset: SNLI (5) \Box We train on small \Box We train on small \Box +6.1% on nega- \underbrace{SNLI} \underbrace{SNLI} \underbrace{SNLI} \underbrace{D} \underbrace{SNLI} \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{C} \underbrace{D} \underbrace{C} \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{D} \underbrace{C} \underbrace{D} \underbrace{D} \underbrace{C} \underbrace{D} \underbrace{C} \underbrace{D} <
+2.8%

Code available at https://github.com/dykang/Adventure

ALLEN INSTITUTE

Carnegie Mellon University

í	$p \Rightarrow h$	$h \Rightarrow h'$	<i>p</i> =
į.	С	$g_ ho$	$\left(\right)$
i.	Ē	Ē	ַ
į.	人		
	~		

Adversarial Examples

 $(\mathbf{x}/\mathbf{y} \text{ is premise or hypothesis sentence})$ (Entail, Contradict, Neutral)

Knowledge Source	Relation in Knowledge	Function	
167 161 .	Hypernym (x, y)		
WordNet (Miller et al., 95)	Antonym (x, y)		
(IVIIIEI et al., 95)	Synonym (x, y)	SUBSTITUTE x wi	
PPDB		a sentence (
(Ganitkevitch et al., 13)	$x \equiv y$		
SICK			
(Marelli et al., 14)	с (х, у)		
domain Knowledge	NEGATE	NEGATE (s)	
training Data	(Seq2Seq, c)	Seq2Seq (s	

es produced by our function: ym (air, atmosphere) for WordNet)

_	
ise	a person on a horse jumps over a broken down airplane
, E	a person is on a horse jumps over a rail, a person jumpin
, C	a person is riding a horse in a field with a dog in a red co
, N	a person is in a blue dog is in a park
ise	a dirt bike rider catches some air going off a large hill
<i>,</i> E	a dirt motorcycle rider catches some air going off a larg
, N	a dirt bike man on yellow bike catches some air going o
<i>,</i> E	a dirt bike rider catches some atmosphere going off a la
	a dirt bike rider do not catch some air going off a large

- 570K) (<u>Bowman et al., 15</u>), **SciTail** (27K) (Khot et al., 2018)
- all set but also that we test on the full set.
- SNLI test (examples containing handful of negation patterns)

)+	+ Word
)	10%	50%	100%	SciTail	1%	10%	50%	100%		+ HAN
68	75.03	82.77	84.52	\mathbb{D}	56.60	60.84	73.24	74.29		+ all
)4	73.45	81.18	84.14	$\mathbb{D}_{\text{retro}}$	59.75	67.99	69.05	72.63		\mathbb{D}
		(AdvEntuRe					s2s	+ positi
	75.66	82.91	84.68	${}_{L} \mathbb{D} + \mathbb{G}^{s2s}$	65.78	70.77	74.68	76.92	$+\mathbb{G}^{s2s}$	+ negat
5	77.11	83.51	84.40	${\scriptstyle \perp} \mathbb{D} + \mathbb{G}^{\text{rule}}$	61.74	66.53	73.99	79.03	T	+ neutra
3	76.03	83.02	83.25	${\scriptstyle \perp} \mathbb{D} + \mathbb{G}^{\text{rule}} + \mathbb{G}^{\text{s2s}}$	63.28	66.78	74.77	78.60		+ all
on SNLI (1%) +4.7%				on So	ciTail	(100%	6)			

 \mathcal{R}/C