Joint Embedding of Words and Labels for Text Classification

Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinghan Shen, Xinyuan Zhang, Ricardo Heano, Lawrence Carin

Motivation

- Text classification as a label-word joint embedding problem
- Use label information to construct text-sequence representations

Contribution

- Label Embedding Attentive Model (LEAM)
- High accuracy in standard benchmarks and clinical dataset
- Only basic algebraic operation involved, hence retains interpretability
- Fewer parameters and less computation

Traditional Models

• Given training set $S = \{(\mathbf{X}_n, \boldsymbol{y}_n)\}_{n=1}^N$ of pair-wise data, where

- $\mathbf{X} \in \mathcal{X}$ is the text sequence,
- $y \in \mathcal{Y}$ is its corresponding label
- Goal: learn a function $f : \mathcal{X} \mapsto \mathcal{Y}$ by

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n=1}^{N} \delta(\boldsymbol{y}_n, f(\mathbf{X}_n))$$

• A typical text classification can be presented as a function decomposition

$$f = f_0 \circ f_1 \circ f_2$$

 $f_0: \mathbf{X} \mapsto \mathbf{V}$ represents text sequence as its word-embedding form $f_1: \mathbf{V} \mapsto \boldsymbol{z}$, aggregates word embeddings into a vector representation $f_2: \boldsymbol{z} \mapsto \boldsymbol{y}_1$ annotates the text representation with a label

Comp	olexity (F	ewer param	eters	eters & Less com					
Model	Parameters		Seq.	Model	# F				
CNN	$m \cdot h \cdot P$	$O(m \cdot h \cdot L \cdot P)$	O(1)	CNN	54				
LSTM	$4 \cdot h \cdot (h+P)$	$O(L \cdot h^2 + h \cdot L \cdot P)$	O(L)	LSTM	1.				
SWEM	0	$O(L \cdot P)$	O(1)	SWEM	6				
Bi-BIoSAN	$7 \cdot P^2 + 5 \cdot P$	$O(P^2 \cdot L^2/R + P^2 \cdot L + P^2 \cdot R^2)$	O(1)	Bi-BIoSAN	3.				
LEAM	$K \cdot P$	$O(K \cdot L \cdot P)$	O(1)	LEAM	6				

LEAM

bit.ly/LEAM-Duke

Experimental Results

Benchmark Classification Accuracy

Model	Yahoo	DBPedia	AGNews	Yelp P.	Yelp F.
Bag-of-	68.9	96.6	88.8	92.2	58
CNN	70.94	98.28	91.45	95.11	59.48
LSTM	70.84	98.55	86.06	94.74	58.17
Deep CNN	73.43	98.71	91.27	95.72	64.26
SWEM	73.53	98.42	92.24	93.76	61.11
fastText	72.3	98.6	92.5	95.7	63.9
HAN	75.8				
Bi-BloSAN	76.28	98.77	93.32	94.56	62.13
LEAM	77.42	99.02	92.45	95.31	64.09
			oification to		ontorio

Test Accuracy on document classification tasks, in percentage

Interpretability

what professional coaches have never played the sport, they are coaching ? , , most played at some level . either college or pro or even high school . n nbut one of the biggest names is the football coach at notra dame . he never played college, pro, and i don t think highschool either.

who is the greatest rock drummer of all time ? , a show of hands . . . come on rush fans ! ! ! , i would have to go with neal peart . . . he s easily the best there is but i m hardly a fan of rush the drummer in my band just thinks he s the greatest and i tend to agree ! ! he s got a hell of

Attention score example

Cos similarity matrix: text and label embedding

t-SNE plot of joint embedding, point clouds for texts and large dots for labels