

IBM I ILLINOIS

JOINT REASONING FOR TEMPORAL AND CAUSAL RELATIONS

University of Illinois, Urbana-Champaign & University of Pennsylvania

TIME IS IMPORTANT

- Understanding time is key to understanding events
 - □ Timelines (in stories, clinical records), time-slot filling, Q&A, common sense
- [June, 1989] Chris Robin lives in England and he is the person that you read about in Winnie the Pooh. As a boy, Chris lived in Cotchfield Farm. <u>When he was three</u>, his father wrote a poem about him. His father later wrote Winnie the Pooh in 1925.
 - Where did Chris Robin live? Clearly, time sensitive.
 - □ When was Chris Robin born? poem [Chris at age 3] →
 - Based on text: <=1922 (Wikipedia: 1920)
 Winnie the Pooh [1925]

COGNITIVE COMPUTATION GROUP

- □ Requires identifying **relations** between events, and temporal reasoning.
- Temporal relation extraction
 - Events are associated with time intervals: $[t_{start}^1, t_{end}^1], [t_{start}^2, t_{end}^2]$
 - □ "A" happens BEFORE/AFTER "B"; "Time" is often expressed **implicitly**
 - □ 2 explicit time expressions per 100 tokens, but **12 temporal relations**

EXAMPLE

- More than 10 people (e1:), he said. A car (e2:
 Friday in the middle of a group of men playing volleyball.
- Temporal question: Which one happens first?
 - □ "e1" appears first in text. Is it also earlier in time?
 - "e2" was on "Friday", but we don't know when "e1" happened.
 - □ No explicit lexical markers, e.g., "before", "since", or "during".

EXAMPLE: TEMPORAL DETERMINED BY CAUSAL

- More than 10 people (e1: died), he said. A car (e2: exploded)
 Friday in the middle of a group of men playing volleyball.
- Temporal question: Which one happens first?
- Obviously, "e2:exploded" is the <u>cause</u> and "e1:died" is the <u>effect</u>.
- So, "e2" happens first.

- In this example, the <u>temporal</u> relation is determined by the <u>causal</u> relation.
- Note also that the lexical information is important here; it's likely that explode BERORE die, irrespective of the context.

EXAMPLE: CAUSAL DETERMINED BY TEMPORAL

 People *raged* and took to the street *stifled* protesters. the government

- Causal question:
 - Did the government stifle people <u>because</u> people raged?
 - Or, people raged <u>because</u> the government stifled people?
 - □ Both sound correct and we are not sure about the causality here.

EXAMPLE: CAUSAL DETERMINED BY TEMPORAL

- People *raged* and took to the street (after) the government *stifled* protesters.
- Causal question:
 - Did the government stifle people <u>because</u> people raged?
 - Or, people raged <u>because</u> the government stifled people?
 - Since "stifled" happened earlier, it's obvious that the cause is "stifled" and the result is "raged".
- In this example, the <u>causal</u> relation is determined by the <u>temporal</u> relation.

THIS PAPER

- Event relations: an essential step of event understanding, which supports applications such as story understanding/completion, summarization, and timeline construction.
 - [There has been a lot of work on this; see Ning et al. ACL'18, presented yesterday. for a discussion of the literature and the challenges.]
- This paper focuses on the joint extraction of temporal and causal relations.
 - □ A **temporal relation (T-Link)** specifies the relation between two events along the temporal dimension.
 - Label set: before/after/simultaneous/...
 - A causal relation (C-Link) specifies the [cause effect] between two events.
 - Label set: causes/caused_by

CONITIVE COMPUTATION GROUP

TEMPORAL AND CASUAL RELATIONS

- T-Link Example: John worked out after finishing his work.
- <u>C-Link Example:</u> He was released due to lack of evidence.
- Temporal and causal relations interact with each other.
 For example, there is also a T-Link between *released* and *lack*
- The decisions on the T-Link type and the C-link type depend on each other, suggesting that joint reasoning could help.

Related Work

- Obviously, temporal and causal relations are closely related (we're not the first who discovered this).
- NLP researchers have also started paying attention to this direction recently.
 - CaTeRs: Mostafazadeh et al. (2016) proposed an *annotation* framework, CaTeRs, which captured both temporal and causal aspects of event relations in common sense stories.
 - CATENA: Mirza and Tonelli (2016) proposed to extract both temporal and causal relations, but only by "*post-editing*" temporal relations based on causal predictions.

• ...

CONTRIBUTIONS

- 1. Proposed a novel joint inference framework for temporal and causal reasoning
 - Assume the availability of a temporal extraction system and a causal extraction system
 - Enforce declarative constraints originating from the physical nature of causality
- 2. Constructed a new dataset with both temporal and causal relations.
 - We augmented the EventCausality dataset (Do et al., 2011), which comes with causal relations, with new temporal annotations.

TEMPORAL RELATION EXTRACTION: AN ILP APPROACH [DO ET AL. EMNLP'12]

Notations

- □ \mathcal{E} --Event node set. $i, j, k \in \mathcal{E}$ are events.
- $\Box \quad r \in \mathcal{R}\text{--temporal relation label}$
- □ $I_r(ij)$ Boolean variable is there a of relation r between *i* and *j*? (Y/N)
- \Box $f_r(ij)$ --score of event pair (i, j) having relation r

Global assignment
of relations:
$$\hat{l} = \arg \max_{l} \sum_{ij \in \mathcal{E}} \sum_{r \in \mathcal{R}} f_r(ij) I_r(ij)$$

such that $\forall i, j, k \in \mathcal{E}, \forall r_1, r_2 \in \mathcal{R}$ The sum of all softmax
scores in this document $Such that \forall i, j, k \in \mathcal{E}, \forall r_1, r_2 \in \mathcal{R}$ $\sum_r I_r(ij) = 1$
 $I_{r1}(ij) + I_{r2}(jk) - I_{r3}(ik) \leq 1$ Uniqueness $I_{r1}(ij) + I_{r2}(jk) - I_{r3}(ik) \leq 1$ Transitivity r_3 --the relation dictated by r_1 and r_2 Image: Computation Group

PROPOSED JOINT APPROACH

Notations

- □ \mathcal{E} --Event node set. $i, j, k \in \mathcal{E}$ are events.
- $\Box \quad r \in \mathcal{R}\text{--temporal relation label}$
- $\Box I_r(ij)$ -Boolean variable is there a of relation r between *i* and *j*? (Y/N)

COMPUTATION GROUP

 \Box **f**_r(**ij**)--score of event pair (*i*, *j*) having relation *r*

 \Box $c \in C$ --causal relation; with corresponding variables $J_c(ij)$ and $h_c(ij)$

$$\begin{split} & \begin{array}{l} \text{Global} \\ & \text{assignment of} \\ \text{T \& C relations} \end{array} \hat{I}, \hat{J} = \arg\max_{I,J} \sum_{ij \in \mathcal{E}} (\sum_{r \in \mathcal{R}} f_r(ij) I_r(ij) + \sum_{c \in \mathcal{C}} h_c(ij) J_c(ij)) \\ & \quad \text{such that } \forall i, j, k \in \mathcal{E}, \forall r_1, r_2 \in \mathcal{R} \\ & \quad \sum_r I_r(ij) = 1 \\ & \quad I_{r1}(ij) + I_{r2}(jk) - I_{r3}(ik) \leq 1 \\ & \quad J_{causes}(ij) \leq I_{before}(ij) \end{split}$$ "Cause" must be before "effect"

SCORING FUNCTIONS

$$\hat{I} = \arg \max_{I} \sum_{ij \in \mathcal{E}} \left(\sum_{r \in \mathcal{R}} f_r(ij) I_r(ij) + \sum_{c \in \mathcal{C}} h_c(ij) J_c(ij) \right)$$

- Two scoring functions are needed in the objective above
 - $f_r(ij)$ --score of event pair (i, j) having temporal relation r
 - *h_c(ij)*--score of event pair (*i*, *j*) having <u>causal</u> relation *c*
- Scoring functions
 - We use the soft-max scores from temporal/causal classifiers (or the log of the softmax scores)
 - Choose your favorite model for the classifiers; here: sparse averaged perceptron
 - Features for a pair of events:
 - POS, token distance
 - modal verbs in-between (i.e., will, would, can, could, may and migne)
 - □ temporal connectives in-between (e.g., before, after and since)
 - □ Whether the two verbs have a common synonym from their synsets in WordNet

EOGNITIVE COMPUTATION GROUP

□ The head word of the preposition phrase that covers each verb

Can we use more than just this "local" information?

BACK TO THE EXAMPLE: TEMPORAL DETERMINED BY CAUSAL

- More than 10 people (e1: died), he said. A car (e2: exploded)
 Friday in the middle of a group of men playing volleyball.
- Temporal question: Which one happens first?
- Obviously, "e2:exploded" is the <u>cause</u> and "e1:died" is the <u>effect</u>.
- So, "e2" happens first.

- In this example, the <u>temporal</u> relation is determined by the <u>causal</u> relation.
- Note also that the lexical information is important here; it's likely that explode BERORE die, irrespective of the context.

TEMPROB: PROBABILISTIC KNOWLEDGE BASE

- Source: New York Times 1987-2007 (#Articles~1M)
- Preprocessing: Semantic Role Labeling & Temporal relations model
- Result: 51K semantic frames, 80M relations
- Then we simply count how many times one frame is before/after another frame, as follows. <u>http://cogcomp.org/page/publication_view/830</u>

Frame 1	Frame 2	Before	After
concern	protect	92%	8%
conspire	kill	95%	5%
fight	overthrow	92%	8%
accuse	defend	92%	8%
crash	die	97%	3%
elect	overthrow	97%	3%

Some Interesting Statistics In TemProb

Some Interesting Statistics In TemProb

17

SCORING FUNCTIONS: ADDITIONAL FEATURE FOR CAUSALITY

$$\hat{I} = \arg \max_{I} \sum_{ij \in \mathcal{E}} \left(\sum_{r \in \mathcal{R}} f_r(ij) I_r(ij) + \sum_{c \in \mathcal{C}} h_c(ij) J_c(ij) \right)$$

- Two scoring functions are needed in the objective above
 - $f_r(ij)$ --score of event pair (i, j) having temporal relation r
 - $h_c(ij)$ --score of event pair (i, j) having <u>causal</u> relation c
- How to obtain the scoring functions
 - We argue that this prior distribution based on **TemProb** is correlated with causal directionality, so it will be a useful feature when training $h_c(ij)$.

RESULT ON TIMEBANK-DENSE

- TimeBank-Dense: A Benchmark Temporal Relation Dataset
- The performance of temporal relation extraction:
 - CAEVO: the temporal system proposed along with TimeBank-Dense
 - CATENA: the aforementioned work "post-editing" temporal relations based on causal predictions, retrained on TimeBank-Dense.

System	Р	R	F1
ClearTK (2013)	53	26	35
CAEVO (2014)	56	42	48
CATENA (2016)	63	27	38
Ning et al. (2017)	47	53	50
This work	46	61	52

A New Joint Dataset

- TimeBank-Dense has only <u>temporal</u> relation annotations, so in the evaluations above, we only evaluated our temporal performance.
- EventCausality dataset has only <u>causal</u> relation annotations.
- To get a dataset with both temporal and causal relation annotations, we choose to <u>augment the EventCausality dataset</u> <u>with temporal relations</u>, using the annotation scheme we proposed in our paper [Ning et al., ACL'18. A multi-axis annotation scheme for event temporal relation annotation.]

	Doc	Event	T-Link	C-Link
TimeBank-Dense	36	1.6K	5.7K	-
EventCausality	25	0.8K	-	0.6K
Our new dataset	25	1.3K	3.4K	0.2K*

*due to re-definition of events

RESULT ON OUR NEW JOINT DATASET

	Temopral			Causal
	Р	R	F	Acc.
Temporal Scoring Fn.	67	72	69	-
Causal Scoring Fn.	-	-	-	71
Joint Inference	69	74	71	77

- The temporal performance got <u>strictly better</u> in P, R, and F₁.
- The causal performance also got improved by <u>a large margin</u>.
- Comparing to when <u>gold temporal</u> relations were used, we can see that there's still much room for causal improvement.
- Comparing to when <u>gold causal</u> relations were used, we can see that the current joint algorithm is very close to its best.

CONCLUSION

- We presented <u>a novel joint inference framework</u>, Temporal and Causal Reasoning (TCR)
 - Using an Integer Linear Programming (ILP) framework applied to the extraction problem of temporal and causal relations between events.
- To show the benefit of TCR, we have developed a new dataset that jointly annotates temporal and causal annotations
 - □ Showed that TCR can improve both temporal and causal components

