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Background: What is Aspect/Opinion Extraction

o Fine-grained Opinion Mining
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Figure 1: An example of review outputs.

» Our focus: Aspect and Opinion Terms Co-extraction
» Challenge: Limited resources for fine-grained annotations
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» Our focus: Aspect and Opinion Terms Co-extraction
» Challenge: Limited resources for fine-grained annotations
= Cross-domain extraction
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Problem Definition

@ Task formulation: Sequence labeling

Labels [N N N N BO BA IA|

Features ﬂ /L - -/! - -

NN NN

| | | | | | |
Input I‘The phone has a good screen size‘

BA — Beginning of aspect
TA — Inside of aspect
BO — Beginning of opinion
10 — Inside of opinion

N — None

Figure 2: A deep learning model for sequence labeling.

@ Domain Adaptation

» Given: Labeled data in source domain Ds={(xs;,¥s,)}:>;, unlabeled

data in target domain Dr={x7,}]

» ldea: Build bridges across domains, learn shared space
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Motivation: Domain Adaptation

@ Domain shift & bridges

Restaurant

appetizers

Figure 3: Domain shift for different domains.

Restaurant
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&~ amod

Figure 4: Syntactic patterns.
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Motivation: Domain Adaptation

@ Domain shift & bridges

i appetizers

Figure 3: Domain shift for different domains. Figure 4: Syntactic patterns.

@ Related work

» Adaptive bootstrapping [Li et al., 2012]
» Auxiliary task with Recurrent neural network [Ding et al., 2017]
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Overview & Contribution

@ Recursive Neural Structural Correspondence Network (RNSCN)
» Structural correspondences are built based on common syntactic
structures
> Use relation vectors with auxiliary labels to learn a shared space across
domains
@ Label denoising auto-encoder
» Deal with auxiliary label noise
» Group relation vectors into their intrinsic clusters in an unsupervised
manner

@ A joint deep model
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Model Architecture: Recursive Neural Network

Domain Adaptation

o Relation vectors: Relations as
embeddings in the feature space

r;3 = tanh(Whhg +4 WXX4)
hy, = tanh(Wamodl’43 + W, x4 + b)

they offer good appetizers
root dobj

Figure 5: A recursive neural network.



Model Architecture: Recursive Neural Network

Domain Adaptation
o Relation vectors: Relations as
embeddings in the feature space

r;3 = tanh(Whhg +4 WXX4)
hy, = tanh(Wamodl’43 + W, x4 + b)

@ Auxiliary task: Dependency

they offer good appetizers relation prediction
.~ \\\j«
N H amoc A~
nsubj T 55 = softmax(Wrras + bg)
root dobj

Figure 5: A recursive neural network.



Model Architecture: Learn Shared Representations

Recursive Neural Structural Correspondence Network (RNSCN)

RNSCN

laptop has
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G e 3 nice screen

Source Target

Figure 6: An example of how RNSCN learns the correspondences.
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Model Architecture: Learn Shared Representations
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Model Architecture: Learn Shared Representations
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Figure 6: An example of how RNSCN learns the correspondences.
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Model Architecture:

Auxiliary Label Denoising
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Figure 7: An autoencoder for label denoising.
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Model Architecture: Auxiliary Label Denoising

Auto-encoder

24000
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group
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Figure 7: An autoencoder for label denoising.

Reduce label noise:
auto-encoders

e Encoding:

8nm = fenc(Wenc, Fnm)
@ Decoding:

Fom = fdec(Wdec, 8nm)
@ Auxiliary task:

9,’;"," = softmax(Wgrgnm)
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Model Architecture: Auxiliary Label Denoising

auto-encoder
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Figure 8: An autoencoder for relation grouping.
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Experiments

Dataset | Description | # Sentences | Training | Testing
R Restaurant 5,841 4,381 1,460
L Laptop 3,845 2,884 961
D Device 3,836 2,877 959
Table 1: Data statistics with number of sentences.
Model R—L L—R D—R D—L
oaels AS oP AS opP AS oP AS opP
CrossCRF 19.72 59.20 28.19 65.52 6.59 39.38 24.22 46.67

cross-domain (1.82) | (1.34) | (0.58) | (0.89) | (0.49) | (3.06) | (2.54) | (2.43)

baselines RAP 2502 | 6272 | 46.00 | 67.08 | 4544 | 60.67 | 28.22 | 50.79
(2.75) | (0.49) | (1.64) | (1.05) | (1.61) | (2.15) | (2.42) | (4.18)

HierJoime | 3366 |- 4810 | - [ 4797 | - [ 3474 | -

(a7) | - | (148) | - | (046) | - | (21)| -

. . RNCRF 24.26 60.86 40.88 66.50 34.59 63.89 40.59 60.17
single-domain (3.97) | (3.35) | (2.09) | (1.48) | (1.34) | (1.59) | (0.80) | (1.20)
baselines RNGRU 24.23 60.65 39.78 62.99 38.15 64.21 39.44 60.85

(2.41) | (1.04) | (0.61) | (0.95) | (2.82) | (1.11) | (2.79) | (1.25)
37.77 62.35 53.18 71.44 49.62 69.42 45.92 63.85
RNSCN-GRU | 45) | (1.85) | (0.75) | (0.97) | (0.34) | (2.27) | (1.14) | (197)
40.43 65.85 52.91 72.51 48.36 73.75 51.14 | 71.18

+o
RNSCN*-GRU | 0 96) | (1.50) | (1.82) | (1.03) | (1.14) | (1.76) | (1.68) | (1.58)

Table 2: Comparisons with different baselines.
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Experiments

@ Injecting noise into syntactic relations

R—L R—D L—R L—D D—R D—L
AS OP AS OP AS OP AS OP AS OP AS OP
RNSCN-GRU 37.77 | 62.35 | 33.02 | 57.54 | 53.18 | 71.44 | 35.65 | 60.02 | 49.62 | 69.42 | 45.92 | 63.85
RNSCN-GRU (r) 32.97 | 50.18 | 26.21 | 53.58 | 35.88 | 65.73 | 32.87 | 57.57 | 40.03 | 67.34 | 40.06 | 59.18
RNSCNT-GRU 40.43 | 65.85 | 35.10 | 60.17 | 52.91 | 72.51 | 40.42 | 61.15 | 48.36 | 73.75 | 51.14 | 71.18
RNSCNT-GRU (r) | 39.27 | 59.41 | 33.42 | 57.24 | 45.79 | 69.96 | 38.21 | 59.12 | 45.36 | 72.84 | 50.45 | 68.05

Models

Table 3: Effect of auto-encoders for auxiliary label denoising.

@ Words grouping learned from auto-encoders

Group 1 | this, the, their, my, here, it, I, our, not

Group 2 | quality, jukebox, maitre-d, sauces, portions, volume, friend, noodles, calamari
Group 3 | in, slightly, often, overall, regularly, since, back, much, ago

Group 4 | handy, tastier, white, salty, right, vibrant, first, ok

Group 5 | get, went, impressed, had, try, said, recommended, call, love

Group 6 | is, are, feels, believes, seems, like, will, would

Table 4: Case studies on word clustering
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Experiments
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Figure 9: Sensitivity studies for L—D.
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Domain Adaptation: Experiments
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Figure 10: F1 vs proportion of unlabeled target data.

17 /19



Outline

@ Conclusion

18/19



Conclusion

@ A novel deep learning framework for Cross-domain aspect and opinion
terms extraction.

@ Embed syntactic structure into a deep model to bridge the gap
between different domains.

Apply auxiliary task to assist knowledge transfer.

Address the problem of negative effect brought by label noise.

Achieve promising results.
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Appendix: Domain Adaptation

Models R—L R—D L—R L—D D—R D—L
AS OP AS OP AS OP AS OP AS OP AS OP

CrossCRF 19.72 59.20 21.07 52.05 28.19 65.52 29.96 56.17 6.59 39.38 24.22 46.67
(1.82) | (1.34) | (0.44) | (1.67) | (0.58) | (0.89) | (1.69) | (1.49) | (0.49) | (3.06) | (2.54) | (2.43)
RAP 25.92 62.72 22.63 54.44 46.90 67.98 34.54 54.25 45.44 60.67 28.22 59.79
(2.75) | (0.49) | (0.52) | (2.20) | (1.64) | (1.05) | (0.64) | (1.65) | (1.61) | (2.15) | (2.42) | (4.18)

Hier-Joint 33.66 - 33.20 - 48.10 - 31.25 47.97 - 34.74 -

(1.47) - (0.52) - (1.45) - (0.49) - (0.46) - (2.27) -
RNCRF 24.26 60.86 24.31 51.28 40.88 66.50 31.52 55.85 34.59 63.89 40.59 60.17
(3.97) | (3.35) | (2.57) | (1.78) | (2.09) | (1.48) | (1.40) | (1.09) | (1.34) | (1.59) | (0.80) | (1.20)
RNGRU 24.23 60.65 20.49 52.28 39.78 62.99 32.51 52.24 38.15 64.21 39.44 60.85
(2.41) | (1.04) | (2.68) | (2.69) | (0.61) | (0.95) | (1.12) | (2.37) | (2.82) | (1.11) | (2.79) | (1.25)
RNSCN-CRF 35.26 61.67 32.00 52.81 53.38 67.60 34.63 56.22 48.13 65.06 46.71 61.88
(1.31) | (1.35) | (1.48) | (1.29) | (1.49) | (0.99) | (1.38) | (1.10) | (0.71) | (0.66) | (1.16) | (1.52)
RNSCN-GRU 37.77 62.35 33.02 57.54 53.18 71.44 35.65 60.02 49.62 69.42 45.92 63.85
(0.45) | (1.85) | (0.58) | (1.27) | (0.75) | (0.97) | (0.77) | (0.80) | (0.34) | (2.27) | (1.14) | (1.97)
RNSCN*-GRU 39.13 63.65 33.97 59.24 55.74 | 75.20 40.30 60.57 51.23 71.93 48.35 68.20
(1.23) | (1.36) | (1.49) | (1.59) | (2.27) | (1.03) | (0.50) | (0.93) | (0.42) | (1.55) | (1.00) | (1.11)
RNSCN*-GRU 40.43 | 65.85 35.10 | 60.17 52.91 72.51 40.42 61.15 48.36 73.75 51.14 | 71.18
(0.96) | (1.50) | (0.62) | (0.75) | (1.82) | (1.03) | (0.70) | (0.60) | (1.14) | (1.76) | (1.68) | (1.58)

Table 5: Comparisons with different baselines.
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