Recursive Neural Structural Correspondence Network for Cross-domain Aspect and Opinion Co-extraction

Wenya Wang^{†‡} and Sinno Jialin Pan[†]

Nanyang Technological University, Singapore

[‡]SAP Innovation Center Singapore

{wa0001ya, sinnopan}@ntu.edu.sg

July 18, 2018

- Introduction
 - Background
 - Definition & Motivation
 - Overview & Contribution
- 2 Model Architecture
- 3 Experiments
- 4 Conclusion

- Introduction
 - Background
 - Definition & Motivation
 - Overview & Contribution
- 2 Model Architecture
- 3 Experiments
- 4 Conclusion

Background: What is Aspect/Opinion Extraction

Fine-grained Opinion Mining

Figure 1: An example of review outputs.

- ▶ Our focus: Aspect and Opinion Terms Co-extraction
- ▶ **Challenge**: Limited resources for fine-grained annotations

Background: What is Aspect/Opinion Extraction

Fine-grained Opinion Mining

Figure 1: An example of review outputs.

- ▶ Our focus: Aspect and Opinion Terms Co-extraction
- ▶ **Challenge**: Limited resources for fine-grained annotations
 - ⇒ Cross-domain extraction

- Introduction
 - Background
 - Definition & Motivation
 - Overview & Contribution
- 2 Model Architecture
- 3 Experiments
- 4 Conclusion

Problem Definition

1 Task formulation: Sequence labeling

Figure 2: A deep learning model for sequence labeling.

Omain Adaptation

- ▶ **Given**: Labeled data in source domain $\mathcal{D}_S = \{(\mathbf{x}_{S_i}, \mathbf{y}_{S_i})\}_{i=1}^{n_S}$, unlabeled data in target domain $\mathcal{D}_T = \{\mathbf{x}_{T_j}\}_{j=1}^{n_T}$
- ▶ Idea: Build bridges across domains, learn shared space

Motivation: Domain Adaptation

Omain shift & bridges

Figure 3: Domain shift for different domains.

Figure 4: Syntactic patterns.

Motivation: Domain Adaptation

Omain shift & bridges

Restaurant offer dobj

nsubj appetizers

amod
good

Laptop
nsubj as dobj
laptop screen
det amod
det amod
det amod

Figure 3: Domain shift for different domains.

Figure 4: Syntactic patterns.

Related work

- Adaptive bootstrapping [Li et al., 2012]
- Auxiliary task with Recurrent neural network [Ding et al., 2017]

- Introduction
 - Background
 - Definition & Motivation
 - Overview & Contribution
- Model Architecture
- 3 Experiments
- 4 Conclusion

Overview & Contribution

- Recursive Neural Structural Correspondence Network (RNSCN)
 - Structural correspondences are built based on common syntactic structures
 - Use relation vectors with auxiliary labels to learn a shared space across domains
- Label denoising auto-encoder
 - Deal with auxiliary label noise
 - Group relation vectors into their intrinsic clusters in an unsupervised manner
- A joint deep model

- Introduction
 - Background
 - Definition & Motivation
 - Overview & Contribution
- 2 Model Architecture
- 3 Experiments
- 4 Conclusion

Model Architecture: Recursive Neural Network

Domain Adaptation

 Relation vectors: Relations as embeddings in the feature space

$$\begin{array}{lcl} r_{43} & = & tanh(\boldsymbol{W}_{h}\boldsymbol{h}_{3} + \boldsymbol{W}_{x}\boldsymbol{x}_{4}) \\ \boldsymbol{h}_{4} & = & tanh(\boldsymbol{W}_{amod}\boldsymbol{r}_{43} + \boldsymbol{W}_{x}\boldsymbol{x}_{4} + \boldsymbol{b}) \end{array}$$

Figure 5: A recursive neural network.

Model Architecture: Recursive Neural Network

Figure 5: A recursive neural network.

Domain Adaptation

 Relation vectors: Relations as embeddings in the feature space

$$\begin{array}{lcl} \textbf{r}_{43} & = & \tanh(\textbf{W}_h\textbf{h}_3+\textbf{W}_x\textbf{x}_4) \\ \textbf{h}_4 & = & \tanh(\textbf{W}_{amod}\textbf{r}_{43}+\textbf{W}_x\textbf{x}_4+\textbf{b}) \end{array}$$

Auxiliary task: Dependency relation prediction

$$\hat{\mathbf{y}}_{43}^R = \operatorname{softmax}(\mathbf{W}_R \mathbf{r}_{43} + \mathbf{b}_R)$$

Recursive Neural Structural Correspondence Network (RNSCN)

Figure 6: An example of how RNSCN learns the correspondences.

Recursive Neural Structural Correspondence Network (RNSCN)

Figure 6: An example of how RNSCN learns the correspondences.

Recursive Neural Structural Correspondence Network (RNSCN)

Figure 6: An example of how RNSCN learns the correspondences.

Figure 6: An example of how RNSCN learns the correspondences.

Model Architecture: Auxiliary Label Denoising

Figure 7: An autoencoder for label denoising.

Model Architecture: Auxiliary Label Denoising

Figure 7: An autoencoder for label denoising.

Reduce label noise:

auto-encoders

Encoding:

$$\mathbf{g}_{nm} = f_{enc}(\mathbf{W}_{enc}, \mathbf{r}_{nm})$$

Decoding:

$$\mathbf{r}'_{nm} = f_{dec}(\mathbf{W}_{dec}, \mathbf{g}_{nm})$$

Auxiliary task:

$$\hat{\mathbf{y}}_{nm}^{R} = \mathsf{softmax}(\mathbf{W}_{R}\mathbf{g}_{nm})$$

Model Architecture: Auxiliary Label Denoising

Figure 8: An autoencoder for relation grouping.

$$\rho(G_{nm} = i | \mathbf{r}_{nm}) = \frac{\exp(\mathbf{r}_{nm}^{\top} \mathbf{W}_{enc} \mathbf{g}_{i})}{\sum\limits_{j \in G} \exp(\mathbf{r}_{nm}^{\top} \mathbf{W}_{enc} \mathbf{g}_{j})} \qquad (1) \quad \ell_{R_{1}} = \|\mathbf{r}_{nm} - \mathbf{W}_{dec} \mathbf{g}_{nm}\|_{2}^{2}
\mathbf{g}_{nm} = \sum\limits_{i=1}^{|G|} \rho(G_{nm} = i | \mathbf{r}_{nm}) \mathbf{g}_{i} \qquad (2) \qquad \ell_{R_{2}} = \sum\limits_{k=1}^{K} -\mathbf{y}_{nm[k]}^{R} \log \hat{\mathbf{y}}_{nm[k]}^{R}
\ell_{R} = \ell_{R_{1}} + \alpha \ell_{R_{2}} + \beta \ell_{R_{3}} \qquad (3) \qquad \ell_{R_{3}} = \|\mathbf{I} - \mathbf{\bar{G}}^{\top} \mathbf{\bar{G}}\|_{F}^{2}$$

- Introduction
 - Background
 - Definition & Motivation
 - Overview & Contribution
- 2 Model Architecture
- 3 Experiments
- 4 Conclusion

Experiments

Dataset	Description	# Sentences	Training	Testing		
R	Restaurant	5,841	4,381	1,460		
L	Laptop	3,845	2,884	961		
D	Device	3,836	2,877	959		

Table 1: Data statistics with number of sentences.

			_		_				
	Models	R→L		L→R		D→R		D→L	
	Models	AS	OP	AS	OP	AS	OP	AS	OP
(CrossCRF	19.72	59.20	28.19	65.52	6.59	39.38	24.22	46.67
cross-domain	CrossCRF	(1.82)	(1.34)	(0.58)	(0.89)	(0.49)	(3.06)	(2.54)	(2.43)
baselines	RAP	25.92	62.72	46.90	67.98	45.44	60.67	28.22	59.79
	KAF	(2.75)	(0.49)	(1.64)	(1.05)	(1.61)	(2.15)	(2.42)	(4.18)
	Hier-Joint	33.66	-	48.10	-	47.97	-	34.74	-
Ų		(1.47)	-	(1.45)	-	(0.46)	-	(2.27)	-
(RNCRF	24.26	60.86	40.88	66.50	34.59	63.89	40.59	60.17
single-domain	KINCKI	(3.97)	(3.35)	(2.09)	(1.48)	(1.34)	(1.59)	(0.80)	(1.20)
baselines 1	RNGRU	24.23	60.65	39.78	62.99	38.15	64.21	39.44	60.85
U	KNGKU	(2.41)	(1.04)	(0.61)	(0.95)	(2.82)	(1.11)	(2.79)	(1.25)
	RNSCN-GRU	37.77	62.35	53.18	71.44	49.62	69.42	45.92	63.85
	KNSCN-GRU	(0.45)	(1.85)	(0.75)	(0.97)	(0.34)	(2.27)	(1.14)	(1.97)
	RNSCN+-GRU	40.43	65.85	52.91	72.51	48.36	73.75	51.14	71.18
		(0.96)	(1.50)	(1.82)	(1.03)	(1.14)	(1.76)	(1.68)	(1.58)

Table 2: Comparisons with different baselines.

Experiments

Injecting noise into syntactic relations

Models	R→L		R→D		L→R		L→D		D→R		D→L	
Models	AS	OP										
RNSCN-GRU	37.77	62.35	33.02	57.54	53.18	71.44	35.65	60.02	49.62	69.42	45.92	63.85
RNSCN-GRU (r)	32.97	50.18	26.21	53.58	35.88	65.73	32.87	57.57	40.03	67.34	40.06	59.18
RNSCN+-GRU	40.43	65.85	35.10	60.17	52.91	72.51	40.42	61.15	48.36	73.75	51.14	71.18
RNSCN+-GRU (r)	39.27	59.41	33.42	57.24	45.79	69.96	38.21	59.12	45.36	72.84	50.45	68.05

Table 3: Effect of auto-encoders for auxiliary label denoising.

Words grouping learned from auto-encoders

Group 1	this, the, their, my, here, it, I, our, not
Group 2	quality, jukebox, maitre-d, sauces, portions, volume, friend, noodles, calamari
Group 3	in, slightly, often, overall, regularly, since, back, much, ago
Group 4	handy, tastier, white, salty, right, vibrant, first, ok
Group 5	get, went, impressed, had, try, said, recommended, call, love
Group 6	is, are, feels, believes, seems, like, will, would

Table 4: Case studies on word clustering

Experiments

Figure 9: Sensitivity studies for $L\rightarrow D$.

Domain Adaptation: Experiments

Figure 10: F1 vs proportion of unlabeled target data.

- Introduction
 - Background
 - Definition & Motivation
 - Overview & Contribution
- 2 Model Architecture
- 3 Experiments
- 4 Conclusion

Conclusion

- A novel deep learning framework for Cross-domain aspect and opinion terms extraction.
- Embed syntactic structure into a deep model to bridge the gap between different domains.
- Apply auxiliary task to assist knowledge transfer.
- Address the problem of negative effect brought by label noise.
- Achieve promising results.

References

Ding, Y., Yu, J., and Jiang, J. (2017).

Recurrent neural networks with auxiliary labels for cross-domain opinion target extraction. In AAAI.

Li, F., Pan, S. J., Jin, O., Yang, Q., and Zhu, X. (2012).

Cross-domain co-extraction of sentiment and topic lexicons. In ACL.

Appendix: Domain Adaptation

Models	R→L		R→D		L-	L→R		L→D		D→R		D→L	
iviodeis	AS	OP											
CrossCRF	19.72	59.20	21.07	52.05	28.19	65.52	29.96	56.17	6.59	39.38	24.22	46.67	
CrossCRF	(1.82)	(1.34)	(0.44)	(1.67)	(0.58)	(0.89)	(1.69)	(1.49)	(0.49)	(3.06)	(2.54)	(2.43)	
RAP	25.92	62.72	22.63	54.44	46.90	67.98	34.54	54.25	45.44	60.67	28.22	59.79	
KAP	(2.75)	(0.49)	(0.52)	(2.20)	(1.64)	(1.05)	(0.64)	(1.65)	(1.61)	(2.15)	(2.42)	(4.18)	
Hier-Joint	33.66	-	33.20	-	48.10	-	31.25	-	47.97	-	34.74	-	
THEF-JOHN	(1.47)	-	(0.52)	-	(1.45)	-	(0.49)	-	(0.46)	-	(2.27)	-	
RNCRF	24.26	60.86	24.31	51.28	40.88	66.50	31.52	55.85	34.59	63.89	40.59	60.17	
KINCKE	(3.97)	(3.35)	(2.57)	(1.78)	(2.09)	(1.48)	(1.40)	(1.09)	(1.34)	(1.59)	(0.80)	(1.20)	
RNGRU	24.23	60.65	20.49	52.28	39.78	62.99	32.51	52.24	38.15	64.21	39.44	60.85	
KNGKO	(2.41)	(1.04)	(2.68)	(2.69)	(0.61)	(0.95)	(1.12)	(2.37)	(2.82)	(1.11)	(2.79)	(1.25)	
RNSCN-CRF	35.26	61.67	32.00	52.81	53.38	67.60	34.63	56.22	48.13	65.06	46.71	61.88	
KNOCK-CKI	(1.31)	(1.35)	(1.48)	(1.29)	(1.49)	(0.99)	(1.38)	(1.10)	(0.71)	(0.66)	(1.16)	(1.52)	
RNSCN-GRU	37.77	62.35	33.02	57.54	53.18	71.44	35.65	60.02	49.62	69.42	45.92	63.85	
KINSCIN-GKU	(0.45)	(1.85)	(0.58)	(1.27)	(0.75)	(0.97)	(0.77)	(0.80)	(0.34)	(2.27)	(1.14)	(1.97)	
RNSCN ^h -GRU	39.13	63.65	33.97	59.24	55.74	75.20	40.30	60.57	51.23	71.93	48.35	68.20	
KINSCIN -GRU	(1.23)	(1.36)	(1.49)	(1.59)	(2.27)	(1.03)	(0.50)	(0.93)	(0.42)	(1.55)	(1.00)	(1.11)	
RNSCN+-GRU	40.43	65.85	35.10	60.17	52.91	72.51	40.42	61.15	48.36	73.75	51.14	71.18	
KNSCN -GRU	(0.96)	(1.50)	(0.62)	(0.75)	(1.82)	(1.03)	(0.70)	(0.60)	(1.14)	(1.76)	(1.68)	(1.58)	

Table 5: Comparisons with different baselines.