## NASH: Toward End-to-End Neural Architecture for Generative Semantic Hashing

**Presenter**: Dinghan Shen\*

Joint work with: Qinliang Su\*, Paidamoyo Chapfuwa, Wenlin Wang, Guoyin Wang, Lawrence Carin, Ricardo Henao

Duke University & Sun Yat-sen University

July 17, 2018

\*Equal contribution

Dinghan Shen et al.

NASH for fast similarity search

July 17, 2018 1 / 17

- Fast and accurate similarity search (i.e., finding documents from a large corpus that are most similar to a query of interest) is at the core of many information retrieval applications;
- One strategy is to represent each document as a continuous vector: such as Paragraph Vector [Le and Mikolov, 2014], Skip-thought vectors [Kiros et al., 2015], Infersent [Conneau et al., 2017], etc. Cosine similarity is typically employed to measure relatedness;



• Semantic hashing is an effective approach: the similarity between two documents can be evaluated by simply calculating pairwise Hamming distances between hashing (binary) codes;

## Motivation:

- Existing semantic hashing approaches typically require two-stage training procedures (e.g. continuous representations are crudely binarized after training);
- Vast amount of unlabeled data is not fully leveraged for learning binary document representations.

### Contributions:

- we propose a simple and generic neural architecture for text hashing that learns binary latent codes for documents, which be trained an end-to-end manner;
- We leverage a Neural Variational Inference (NVI) framework, which introduces data-dependent noises during training and makes effective use of unlabeled information.

- Notations: let x and z denote the input document and its corresponding binary hash code, respectively;
- We define a generative model that simultaneously accounts for both the encoding distribution, p(z|x), and decoding distribution, p(x|z),



• We define approximations  $q_{\phi}(z|x)$  and  $q_{\theta}(x|z)$  via inference and generative networks, parameterized by  $\phi$  and  $\theta$ , respectively.

- The generative term provides a natural training objective for semantic hashing: with the decoder network modeling p(x|z), the key semantic information from x is naturally encapsulated.
- To tailor the NVI framework for semantic hashing, we cast z as a binary latent variable and assume a multivariate Bernoulli prior on z:

$$z: p(z) \sim \mathsf{Bernoulli}(\gamma) = \prod_{i=1}^{l} \gamma_i^{z_i} (1-\gamma_i)^{1-z_i}; \tag{1}$$

• The encoding (approximate posterior) distribution  $q_{\phi}(z|x)$  is restricted to take the form  $q_{\phi}(z|x) = \text{Bernoulli}(h)$ , where h is inferred from x with the encoder network.

イロト イポト イヨト イヨト

- We can obtain samples from the *Bernoulli posterior* either deterministically or stochastically:
- Suppose z is a *l*-bit hash code, the deterministic binarization is defined as (for *i* = 1, 2, ....., *l*):

$$z_i = \mathbf{1}_{\sigma(g_{\phi}^i(x)) > 0.5} = \frac{\operatorname{sign}(\sigma(g_{\phi}^i(x) - 0.5) + 1)}{2}$$
(2)

• stochastic binarization (where μ<sub>i</sub> ~ Uniform(0, 1)):

$$z_i = \mathbf{1}_{\sigma(g^i_{\phi}(x)) > \mu_i} = \frac{\operatorname{sign}(\sigma(g^i_{\phi}(x)) - \mu_i) + 1}{2}, \quad (3)$$

• To estimate the parameters of the encoder and decoder networks, we maximize a variational lower bound:

$$\begin{aligned} \mathcal{L}_{\text{vae}} &= \mathbb{E}_{q_{\phi}(z|x)} \left[ \log \frac{q_{\theta}(x|z)p(z)}{q_{\phi}(z|x)} \right], \\ &= \mathbb{E}_{q_{\phi}(z|x)} [\log q_{\theta}(x|z)] - D_{\mathcal{KL}}(q_{\phi}(z|x)||p(z)), \end{aligned}$$
(4)

- The KL-divergence D<sub>KL</sub>(q<sub>φ</sub>(z|x)||p(z)) encourages the approximate posterior q<sub>φ</sub>(z|x) to be close to the multivariate Bernoulli prior p(z);
- $D_{KL}(q_{\phi}(z|x)||p(z))$  can be written in closed-form.

- It is challenging to backpropagate gradients through the discrete (binary) latent variable, since the derivative of the *sign* function is zero for almost all input values;
- Instead, we utilize the straight-through (ST) estimator, which was first introduced by [Hinton (2012)]. It simply backpropagates through the hard threshold by approximating the gradient  $\partial z / \partial \sigma(g_{\phi}^{i}(x))$  as 1:

$$\frac{d\mathbb{E}_{q_{\phi}(z|x)}[\log q_{\theta}(x|z)]}{\partial \phi} = \frac{d\mathbb{E}_{q_{\phi}(z|x)}[\log q_{\theta}(x|z)]}{dz} \frac{dz}{d\sigma(g_{\phi}^{i}(x))} \frac{d\sigma(g_{\phi}^{i}(x))}{d\phi} \\
\approx \frac{d\mathbb{E}_{q_{\phi}(z|x)}[\log q_{\theta}(x|z)]}{dz} \frac{d\sigma(g_{\phi}^{i}(x))}{d\phi} \tag{5}$$

# Framework components

Injecting Data-dependent Noise to z

• We found that injecting random Gaussian noise into z makes the decoder a more favorable regularizer for the binary codes;



• The objective function in (4) can be written in a form similar to **the rate-distortion tradeoff**:

$$\min \mathbb{E}_{q_{\phi}(z|x)} \left[ \underbrace{-\log q_{\phi}(z|x)}_{\text{Rate}} + \underbrace{\frac{1}{2\sigma^{2}}}_{\beta} \underbrace{||x - Ez||_{2}^{2}}_{\text{Distortion}} + C \right], \quad (6)$$

- While labeled data are available, we can explicitly learn a mapping from latent variable z to labels y, here parametrized by a two-layer MLP followed by a fully-connected softmax layer.
- As a result, the loss function is a combination of variational lower bound and discriminative (cross-entropy) loss:

$$\mathcal{L} = -\mathcal{L}_{\text{vae}}(\theta, \phi; \mathbf{x}) + \alpha \mathcal{L}_{\text{dis}}(\eta; \mathbf{z}, \mathbf{y}).$$
(7)

- **Datasets**: we evaluate the proposed method on three benchmarks: *Reuters21578, 20Newsgroups, TMC (SIAM text mining competition)*;
- TFIDF features are utilized as the input x for documents;
- we set the dimension of *z*, *i.e.*, the number of bits within the hashing code, as 8, 16, 32, 64, or 128;
- We employed **precision** as the evaluation metric: the percentage of documents among the top 100 retrieved ones that belong to the same label (topic) with the query document.

## Experiments

#### Semantic Hashing Evaluation

| Method  | 8 bits | 16 bits | 32 bits | 64 bits  | 128 bits |
|---------|--------|---------|---------|----------|----------|
|         | 0.0100 |         |         | 0.1.0100 |          |
| LSH     | 0.2802 | 0.3215  | 0.3862  | 0.4667   | 0.5194   |
| S-RBM   | 0.5113 | 0.5740  | 0.6154  | 0.6177   | 0.6452   |
| SpH     | 0.6080 | 0.6340  | 0.6513  | 0.6290   | 0.6045   |
| STH     | 0.6616 | 0.7351  | 0.7554  | 0.7350   | 0.6986   |
| VDSH    | 0.6859 | 0.7165  | 0.7753  | 0.7456   | 0.7318   |
| NASH    | 0.7113 | 0.7624  | 0.7993  | 0.7812   | 0.7559   |
| NASH-N  | 0.7352 | 0.7904  | 0.8297  | 0.8086   | 0.7867   |
| NASH-DN | 0.7470 | 0.8013  | 0.8418  | 0.8297   | 0.7924   |

Table: Precision of the top 100 retrieved documents on *Reuters* dataset (*Unsupervised hashing*).



Figure: Precision of the top 100 retrieved documents on *Reuters* dataset (*Supervised hashing*).

#### • Fast similarity search:

- Consistently outperform several strong baseline methods;
- Enjoy the attractive property of end-to-end training;
- Same observations on other benchmarks.

## Experiments Ablation study



| Network       | Encoder | Decoder |
|---------------|---------|---------|
| linear        | 0.5844  | 0.6225  |
| one-layer MLP | 0.6187  | 0.3559  |
| two-layer MLP | 0.6225  | 0.1047  |

Figure: The precisions of the top 100 retrieved documents for NASH-DN with *stochastic* or *deterministic* binary latent variables.

 Table: Ablation study with different encoder/decoder networks.

- Leveraging stochastically sampling during training generalizes better;
- Linear decoder networks gives rise to better empirical results.

| Category    | Title/Subject                       | 8-bit code | 16-bit code        |  |
|-------------|-------------------------------------|------------|--------------------|--|
| Baseball    | Dave Kingman for the hall of fame   | 11101001   | 0010110100000110   |  |
|             | Time of game                        | 11111001   | 001010000111       |  |
|             | Game score report                   | 11101001   | 0010110100000110   |  |
|             | Why is Barry Bonds not batting 4th? | 11101101   | 0011110100000110   |  |
| Electronics | Building a UV flashlight            | 10110100   | 001000100010101    |  |
|             | How to drive an array of LEDs       | 1011010    | 0010001000101001   |  |
|             | 2% silver solder                    | 11010101   | 001000100010101011 |  |
|             | Subliminal message flashing on TV   | 10110100   | 0010011000101001   |  |

Figure: Examples of learned compact hashing codes on 20Newsgroups dataset.

• NASH typically compresses documents with shared topics into very similar binary codes.

- This paper presents a first step towards end-to-end semantic hashing;
- A neural variational framework is introduced to optimize the hash function during training;
- The connections between the proposed method and rate-distortion theory are established.



・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト



- Distributed Representations of Sentences and Documents ICML 2014;
- Skip-thought vectors *NIPS 2015*;
- Supervised Learning of Universal Sentence Representations from Natural Language Inference Data *EMNLP 2017*;



Geoffrey Hinton. 2012. Neural networks for ma- chine learning, coursera. URL: http://coursera. org/course/neuralnets;