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Background

Semantic Hashing

e Fast and accurate similarity search (i.e., finding documents from a
large corpus that are most similar to a query of interest) is at the core
of many information retrieval applications;

@ One strategy is to represent each document
as a continuous vector: such as Paragraph
Vector [Le and Mikolov, 2014],
Skip-thought vectors [Kiros et al., 2015], .
Infersent [Conneau et al., 2017], etc. o
Cosine similarity is typically employed to D
measure relatedness;
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@ Semantic hashing is an effective approach: the similarity between two
documents can be evaluated by simply calculating pairwise Hamming
distances between hashing (binary) codes;
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o Motivation:

e Existing semantic hashing approaches typically require two-stage
training procedures (e.g. continuous representations are crudely
binarized after training);

e Vast amount of unlabeled data is not fully leveraged for learning binary
document representations.

o Contributions:

e we propose a simple and generic neural architecture for text hashing
that learns binary latent codes for documents, which be trained an
end-to-end manner;

o We leverage a Neural Variational Inference (NVI) framework, which
introduces data-dependent noises during training and makes effective
use of unlabeled information.
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Framework components

Hashing under the NVI Framework

@ Notations: let x and z denote the input document and its
corresponding binary hash code, respectively;

@ We define a generative model that simultaneously accounts for both
the encoding distribution, p(z|x), and decoding distribution, p(x|z),
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o We define approximations g4(z|x) and gg(x|z) via inference and
generative networks, parameterized by ¢ and 0, respectively.
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Framework components

Training with Binary Latent Variables

@ The generative term provides a natural training objective for semantic
hashing: with the decoder network modeling p(x|z), the key semantic
information from x is naturally encapsulated.

@ To tailor the NVI framework for semantic hashing, we cast z as a
binary latent variable and assume a multivariate Bernoulli prior on z:

z : p(z) ~ Bernoulli(~y Hy )i (1)

@ The encoding (approximate posterior) distribution gg4(z|x) is
restricted to take the form g,(z|x) = Bernoulli(h), where h is inferred
from x with the encoder network.
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Framework components

Training with Binary Latent Variables

@ We can obtain samples from the Bernoulli posterior either
deterministically or stochastically:

@ Suppose z is a /-bit hash code, the deterministic binarization is
defined as (for i = 1,2, ...... )

sign(o(gj(x) — 0.5) + 1
2i = 1o(gi (x))>05 = > (2)

e stochastic binarization (where ;; ~ Uniform(0, 1)):

sign(o(g)(x)) — pi) +1
7 = Loty = 2 ’ G)
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Framework components

Training with Binary Latent Variables

@ To estimate the parameters of the encoder and decoder networks, we
maximize a variational lower bound:

qe(X|Z)P(Z)]
as(zlx) |’
= Eq, (210108 a0(x|2)] — Dri(gs(z|x)[|p(2)), (4)

Lyae = Iqu{,(z|x) |:|Og

e The KL-divergence Dk (q4(z|x)||p(2)) encourages the approximate
posterior gy4(z|x) to be close to the multivariate Bernoulli prior p(z);

e Dki(qs(2z|x)||p(2)) can be written in closed-form.
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Framework components

Training with Binary Latent Variables

@ It is challenging to backpropagate gradients through the discrete
(binary) latent variable, since the derivative of the sign function is
zero for almost all input values;

o Instead, we utilize the straight-through (ST) estimator, which was
first introduced by [Hinton (2012)]. It simply backpropagates through
the hard threshold by approximating the gradient 82/80(g(;5(x)) as 1:

dEq, (z1x) [108 qo(x|2)]
99
_ qu¢(z|X)[|og qg(X|Z)] dz da(gé;(x))
dz do(gé;(x)) do
_ dEq, (o) [log go(x|2)] do(gy(x)) (5)
- dz do
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Framework components

Injecting Data-dependent Noise to z

@ We found that injecting random
Gaussian noise into z makes the
decoder a more favorable regularizer
for the binary codes;
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@ The objective function in (4) can be written in a form similar to the
rate-distortion tradeoff:

. 1
minEq, (z}x) | ~log 9o (2lx) + 55 [Ix — Ez|[3+C| , (6)
Rate 3 Distortion
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Framework components

Extension to Supervised Hashing

@ While labeled data are available, we can explicitly learn a mapping
from latent variable z to labels y, here parametrized by a two-layer
MLP followed by a fully-connected softmax layer.

@ As a result, the loss function is a combination of variational lower
bound and discriminative (cross-entropy) loss:

L= —Lyae(0, ¢; x) + aLais(n; 2, y). (7)

Dinghan Shen et al. NASH for fast similarity search July 17, 2018 10 / 17



Experiments

Datasets & Experimental Setup

o Datasets: we evaluate the proposed method on three benchmarks:
Reuters21578, 20Newsgroups, TMC (SIAM text mining competition),

@ TFIDF features are utilized as the input x for documents;

@ we set the dimension of z, i.e., the number of bits within the hashing
code, as 8,16,32,64, or 128;

@ We employed precision as the evaluation metric: the percentage of
documents among the top 100 retrieved ones that belong to the same
label (topic) with the query document.
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Experiments

Semantic Hashing Evaluation

Method 8 bits | 16 bits | 32 bits | 64 bits | 128 bits
LSH 0.2802 | 0.3215 | 0.3862 | 0.4667 | 0.5194
S-RBM 0.5113 | 0.5740 | 0.6154 | 0.6177 | 0.6452
SpH 0.6080 | 0.6340 | 0.6513 | 0.6290 | 0.6045
STH 0.6616 | 0.7351 | 0.7554 | 0.7350 | 0.6986
VDSH 0.6859 | 0.7165 | 0.7753 | 0.7456 | 0.7318
NASH 0.7113 | 0.7624 | 0.7993 | 0.7812 | 0.7559
NASH-N || 0.7352 | 0.7904 | 0.8297 | 0.8086 | 0.7867
NASH-DN || 0.7470 | 0.8013 | 0.8418 | 0.8297 | 0.7924

Table: Precision of the top
documents on Reuters dataset (Unsupervised

hashing).

o Fast similarity search:
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Figure: Precision of the top 100
retrieved documents on Reuters
dataset (Supervised hashing).

o Consistently outperform several strong baseline methods;

e Enjoy the attractive property of end-to-end training;

o Same observations on other benchmarks.
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Experiments

Ablation study
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Figure: The precisions of the top 100 retrieved Table: Ablation study with different
documents for NASH-DN with stochastic or encoder/decoder networks.

deterministic binary latent variables.

@ Leveraging stochastically sampling during training generalizes better;

@ Linear decoder networks gives rise to better empirical results.
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Experiments

Qualitative Analysis

Category Title/Subject 8-bit code 16-bit code

Dave Kingman for the hall of fame | 11101001 | 0010110100000110

Baseball Time of game 11111001 | 0010100100000111
Game score report 11101001 {0010110100000110

Why is Barry Bonds not batting 4th? | 11101101 | 0011110100000110
Building a UV flashlight 10110100 [001000100010101T

Electronics How to drive an array of LEDs 10110101 [ 0010001000101001
2% silver solder 11010101 | 0010001000101011
Subliminal message flashing onTV | 10110100 | 0010011000101001

Figure: Examples of learned compact hashing codes on 20Newsgroups dataset.

@ NASH typically compresses documents with shared topics into very
similar binary codes.
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Conclusions

Take away

@ This paper presents a first step towards end-to-end semantic hashing;

@ A neural variational framework is introduced to optimize the hash
function during training;

@ The connections between the proposed method and rate-distortion
theory are established.
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