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Location Lost in Translation

SocietySocial Media

impacts

impacts
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Applications: Public Health Monitoring

Allergy Rates (Paul and Dredze, 2011)
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Applications: Emergency Situation Awareness: Bushfires, Floods and
Earthquakes

Fight bushfire with #fire: Alert hospital before anybody calls
(Cameron et al., 2012)
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Location Location Location
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Profile field is noisy (Hecht et. al, 2011), GPS data is scarce
(Hecht and Stephens, 2014), and biased toward younger urban

users (Pavalanathan and Eisenstein, 2015)
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Geolocation: The three Ls

Ain’t this place a geographical 
oddity; two weeks away from 
everywhere!

Link

Location

Language
Geolocation

User geolocation is the task of identifying the “home” location of a
social media user using contextual information such as
geographical variation in language use and in social interactions.
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Huge amounts of unlabelled data, little labelled data

Multiple views of Data: Text, Network
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Previous Work (not exhaustive)

Text-based Supervised Classification

Backstrom et al. (2008)

Cheng et al. (2010)

Wing and Baldridge (2011, 2014)

Network-based Semi-supervised Regression

Backstrom et al. (2010)

Davis Jr et al. (2011)

Jurgens (2013)

No Text No NetworkJoint/Hybrid Text+Network 

Rahimi et al. (2015)

Do et al. (2017)

Miura et al. (2017)
Don’t utilise unlabelled text data

Our work: Text+Network Semi-supervised Geolocation
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Twitter Geolocation Datasets

GeoText TwitterUS TwitterWorld
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Discretisation of Labels

Cluster continuous lat/lon: cluster ids are labels.

Use the median training point of the predicted region as the
final continuous prediction.

Evaluate using Mean and Median errors between the known
and the predicted coordinates.
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Text and Network Views of Data
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Two users are connected if they have a common @-mention.
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Baseline 1: FeatConcat

Concatenate A and X , and feed them to a DNN:
Y = f ([X ,A])

The dimensions of A, and consequently the number of
parameters grow with the number of samples.
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Baseline 2: DCCA

maximally correlated

FC sigmoid

FC softmax

X : text BoW A: Neighbours

predicted location: ŷ

FC linear

Unsupervised DCCA Supervised Geolocation

FC ReLU

CCA loss backprop

Learn a shared representation using Deep Canonical Correlation
Analysis (Andrew et al., 2013):

ρ = corr(f1(X ), f2(A)) = cov(f1(X ),f2(A))√
var(f1(X )).var(f2(A))

Y = f ([f1(X ), f 2(A)])
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Proposed Model: GCN

Highway GCN:

Highway GCN: ,

Output GCN:

X

A

A

A
tanh

tanh

softmax

H0
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H l−1

H l

predicted location: ŷ

W l−1, bl−1, W l−1
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h
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h , b

1
h

W l , bl

GCN Layer: H(l+1) = ReLU
(
AH(l)W (l) + b

)
Adding more layers results in expanded neighbourhood smoothing:
control with highway gates W l

h, b
l
h
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Highway GCN: Control Neighbourhood Smoothing
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layer gates: T (~hl) = σ
(
W l

h
~hl + blh

)
layer output: ~hl+1 = ~hl+1 ◦ T (~hl) + ~hl ◦ (1− T (~hl))︸ ︷︷ ︸

weighted sum of layer input and output
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Neighbourhood Smoothing
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Smoothing immediate neighbourhood: A · X
smoothing expanded neighbourhood: A · A · X
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Sample Representation using t-SNE

FeatConcat [X, A]

1 GCN A · X

DCCA

2 GCN A · A · X
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Test Results: Median Error
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Test Results: Median Error

GeoText TwitterUS TwitterWorld
0

200

400

600

800

1000
M

ed
ia

n
E

rr
or

in
km

Text
Social
Hybrid
Joint DCCA
Joint FeatConcat
Joint GCN

19 / 25



Test Results: Median Error
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Top Features Learnt from Unlabelled Data (1% Supervision)

Seattle, WA Austin, TX Jacksonville, FL Columbus, OH

#goseahawks stubb unf laffayette
smock gsd ribault #weareohio
traffuck #meatsweats wahoowa #arcgis
ferran lanterna wjct #slammin
promissory pupper fscj #ouhc
chowdown effaced floridian #cow
ckrib #austin #jacksonville mommyhood
#uwhuskies lmfbo #mer beering

Top terms for a few regions detected by GCN using only 1% of
Twitter-US for supervision. The terms that existed in labelled
data are removed.
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Dev. Results: How much labelled data do we really have?
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Test results with 1% labelled data
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Confusion Matrix Between True Location and Predicted Location
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Tr
ue

Users from smaller states are misclassified in nearby larger
states such as TX, NY, CA, and OH.

Users from FL are misclassified in several other states possibly
because they are not born in FL, and are well connected to
their hometowns in other states.
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Conclusion

Simple concatenation in FeatConcat is a strong baseline with
large amounts of labelled data.

GCN performs well with both large and small amounts of
labelled data by effectively using unlabelled data.

Gating mechanisms (e.g. highway gates) are essential for
controlling neighbourhood smoothing in GCN with multiple
layers.

The models proposed here are applicable to other
demographic inference tasks.
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Thank you!

Code available at:
https://github.com/afshinrahimi/geographconv
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