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What are rumors?

A story or statement whose truth value is 
unverified or deliberately false
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Ø people tend to stop spreading a rumor if it 
is known as false. (Zubiaga et al., 2016b) 

Ø Previous studies focused on text mining 
from sequential microblog streams, we 
want to bridge the content semantics and 
propagation clues.

How the fake news propagated?

supportive

denial
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Motivation

￭ We generally are not good at distinguishing rumors

￭ It is crucial to track and debunk rumors early to minimize 
their harmful effects.

￭ Online fact-checking services have limited topical 
coverage and long delay. 

￭ Existing models use feature engineering – over simplistic; 
or recently deep neural networks – ignore propagation 
structures; Kernel-based method – develop based on tree 
structure but cannot learn high-level feature 
representations automatically.
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￭ IDEA: Combining the two models, leveraging propagation 
structure by representation learning algorithm

(a) RNN-based model 
(Ma et al. 2016)

Doubt

Support

Neutral

(b) Tree kernel-based model 
(Ma et al. 2017)

￭ Existing works: Consider post representation or propagation 
structure
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￭ A reply usually respond to its immediate ancestor rather than the root 
tweet. 

￭ Repliers tend to disagree with (or question) who support a false rumor or 
deny a true rumor; repliers tend to agree with who deny a false rumor or 
support a true rumor. 

(a) False rumor (b) True rumor
Polarity	stances	

Why such model do better?

Local characteristic:
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Contributions
￭ The first study that deeply integrates both structure and 

content semantics based on tree-structured recursive neural 
networks for detecting rumors from microblog posts 

￭ Propose two variants of RvNN models based on bottom-up 
and top-down tree structures, to generate better integrated 
representations for a claim by capturing both structural and 
textural properties signaling rumors.

￭ Our experiments based on two real-world Twitter datasets 
achieve superior improvements over state-of-the-art 
baselines on both rumor classification and early detection 
tasks. 

￭ We make the source codes in our experiments publicly 
accessible at https://github.com/majingCUHK/Rumor_RvNN
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Related Work
￭ Systems based on common sense and investigative journalism, 

e.g.,
￭ snopes.com
￭ factcheck.org

￭ Learning-based models for rumor detection
￭ Information credibility: Castillo et al. (2011), Yang et al. (2012)
￭ Using handcrafted and temporal features:  Liu et al. (2015), Ma et al. 

(2015), Kwon et al. (2013, 2017)
￭ Using cue terms: Zhao et al. (2015)
￭ Using recurrent neural networks: Ma et al. (2016, 2018)
￭ Tree-kernel-based model: 

Ma et al. (2017), Wu et al. (2015)
￭ RvNN-based works

￭ images segmentation (Socher et al, 2011)
￭ phrase representation from word vectors (Socher et al, 2012)
￭ Sentiment analysis (Socher et al, 2013)
￭ etc
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Without	hand-
crafted	features
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Problem Statement
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￭ Given a set of microblog posts R = {𝑟}, model each source 
tweet as a tree structure T 𝑟 =	< 𝑉, 𝐸 >, where each 
node 𝑣 provide the text content of each post. And 𝐸 is 
directed edges corresponding to response relation.

￭ Task 1 – finer-grained classification for each source post
false rumor, true rumor, non-rumor, unverified rumor

￭ Task 2 – detect rumor as early as possible
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Tweet Structure
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Root tweet

replies

𝒙𝟏: #Walmart donates $10,000 to #DarrenWilson
fund to continue police racial profiling…

𝒙𝟑: NEED SOURCE. 
have a feeling this 
is just hearsay ...

𝒙𝟒: I agree. I have been 
hearing this all day but 

no source 1:12

𝒙𝟓: Exactly, i don't think 
Wal-Mart would let everyone 
know this if they did!! 2:21

𝒙𝟐:	1:30 Idc if they killed
a mf foreal. Ima always 

shop with @Walmart. I'm 
just bein honest 💁

𝒙𝟏: #Walmart donates $10,000 to #DarrenWilson
fund to continue police racial profiling…

𝒙𝟑: NEED SOURCE. 
have a feeling this 
is just hearsay ...

𝒙𝟒: I agree. I have been 
hearing this all day but 

no source 1:12

𝒙𝟓: Exactly, i don't think 
Wal-Mart would let everyone 
know this if they did!! 2:21

𝒙𝟐:	1:30 Idc if they killed
a mf foreal. Ima always 

shop with @Walmart. I'm 
just bein honest 💁

bottom-up	tree	

top-down	tree	
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Standard Recursive Neural Networks 
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￭ RvNN (tree-structured neural networks) utilize sentence parse trees: 
representation associated with each node of a parse tree is computed 
from its direct children, computed by 

𝑝 = 𝑓(𝑊 9 𝑐;; 𝑐= + 𝑏)
￭ p: the feature vector of a parent node whose children are 𝑐; and 𝑐=
￭ computation is done recursively over all tree nodes
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Bottom-up RvNN
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Ø Input: bottom-up tree (node: a post represented as a vector of words )

Ø Structure: recursively visit every node from the leaves at the bottom 
to the root at the top (a natural extension to the original RvNN )

Ø Intuition: local rumor indicative features are aggregated along 
different branches (e.g., subtrees having a denial parent and a set of 
supportive children) (generate a feature vector for each subtree)

𝒙𝟏: #Walmart donates $10,000 to #DarrenWilson
fund to continue police racial profiling…

𝒙𝟑: NEED SOURCE. 
have a feeling this 
is just hearsay ...

𝒙𝟒: I agree. I have been 
hearing this all day but 

no source 1:12

𝒙𝟓: Exactly, i don't think 
Wal-Mart would let everyone 
know this if they did!! 2:21

𝒙𝟐:	1:30 Idc if they killed
a mf foreal. Ima always 

shop with @Walmart. I'm 
just bein honest 💁

Ø GRU equation at node 𝑗

Own input

Children node
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Top-down RvNN
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𝒙𝟏: #Walmart donates $10,000 to #DarrenWilson
fund to continue police racial profiling…

𝒙𝟑: NEED SOURCE. 
have a feeling this 
is just hearsay ...

𝒙𝟒: I agree. I have been 
hearing this all day but 

no source 1:12

𝒙𝟓: Exactly, i don't think 
Wal-Mart would let everyone 
know this if they did!! 2:21

𝒙𝟐:	1:30 Idc if they killed
a mf foreal. Ima always 

shop with @Walmart. I'm 
just bein honest 💁

Ø Input: top-down tree

Ø Structure: recursively visit from the root node to its children until 
reaching all leaf nodes. (reverse Bottom-up RvNN)

Ø Intuition: rumor-indicative features are aggregated along the 
propagation path (e.g., if a post agree with its parent’s stance, the 
parent’s stance should be reinforced) (models how information 
flows from source post to the current node)

Ø GRU transition equation at node 𝑗
Own input Parent node
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Ø Comparison:
both of the two RvNN models aim to capture the structural properties by recursively 

visiting all nodes 
Bottom-up RvNN: the state of root node (i.e., source tweet) can be regard as the 

representation of the whole tree (can be used for supervised classification).
Top-down RvNN: the representation of each path are eventually embedded into the hidden 

vector of all the leaf nodes. 

Ø Output Layer
Bottom-up RvNN: 𝑦 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑉ℎK + 𝑏
Top-down RvNN: 𝑦 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑉ℎL + 𝑏

Ø Objective Function: 𝐿 = ∑ ∑ 𝑦O − 𝑦QO =R
OS; +T

US; 𝜆 Θ =
=

Ø Training Procedure
parameters are updated using efficient back-propagation through structure (Goller and 

Kuchler, 1996; Socher et al., 2013) 

learned	vector	of	root	node

the	pooling	vector	over	all	leaf	nodes	

prediction Ground	truth
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Data Collection

￭ Use two reference Tree datasets:
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URL	of	the	datasets:
https://www.dropbox.com/s/0jhsfwep3ywvpca/rumdetect2017.zip?dl=0
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Approaches to compare with
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￭ DTR: Decision tree-based ranking model using enquiry phrases 
to identify trending rumors (Zhao et al., 2015)

￭ DTC: Twitter information credibility model using Decision 
Tree Classifier (Castillo et al., 2011);

￭ RFC: Random Forest Classifier using three parameters to fit 
the temporal tweets volume curve (Kwon et al., 2013)

￭ SVM-TS: Linear SVM classifier using time-series structures to 
model the variation of social context features. (Ma et al., 2015)

￭ SVM-BOW: linear SVM classifier using bag-of-words.
￭ SVM-TK and SVM-HK: SVM classifier uses a Tree Kernel 

(Ma et al., 2017) and that uses a Hybrid Kernel (Wu et al., 
2015), both model propagation structures with kernels.

￭ GRU-RNN: The RNN-based rumor detection model. (Ma et 
al., 2016)

￭ Ours (BU-RvNN and TD-RvNN): Our bottom-up and top-
down recursive models.



Jing Ma (CUHK)

Results on Twitter15

2018/7/15
22

Method Accu.
NR FR TR UR
F1 F1 F1 F1

DTR 0.409 0.501 0.311 0.364 0.473
DTC 0.454 0.733 0.355 0.317 0.415
RFC 0.565 0.810 0.422 0.401 0.543

SVM-TS 0.544 0.796 0.472 0.404 0.483
SVM-BOW 0.548 0.564 0.524 0.582 0.512
SVM-HK 0.493 0.650 0.439 0.342 0.336
SVM-TK 0.667 0.619 0.669 0.772 0.645

GRU-RNN 0.641 0.684 0.634 0.688 0.571
BU-RvNN 0.708 0.695 0.728 0.759 0.653
TD-RvNN 0.723 0.682 0.758 0.821 0.654

NR: Non-Rumor; FR: False Rumor;
TR: True Rumor; UR: Unverified Rumor;

hand-crafted	
features	(e.g.,	
user	info	→ NR	
vs	others)

Structural	info
Linear	chain	input
More	info	loss
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NR: Non-Rumor; FR: False Rumor;
TR: True Rumor; UR: Unverified Rumor;

Method Accu.
NR FR TR UR
F1 F1 F1 F1

DTR 0.414 0.394 0.273 0.630 0.344
DTC 0.465 0.643 0.393 0.419 0.403
RFC 0.585 0.752 0.415 0.547 0.563

SVM-TS 0.574 0.755 0.420 0.571 0.526
SVM-BOW 0.585 0.553 0.556 0.655 0.578
SVM-HK 0.511 0.648 0.434 0.473 0.451
SVM-TK 0.662 0.643 0.623 0.783 0.655

GRU-RNN 0.633 0.617 0.715 0.577 0.527
BU-RvNN 0.718 0.723 0.712 0.779 0.659
TD-RvNN 0.737 0.662 0.743 0.835 0.708

models	without	
hand-crafted	
features
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Results on Early Detection
❑ In the first few hours, the 

accuracy of the RvNN-
based methods climbs 
more rapidly and stabilize 
more quickly

❑ TD-RvNN and BU-
RvNN only need around 
8 hours or about 90 
tweets to achieve the 
comparable performance 
of the best baseline 
model.

2018/7/15
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(a) Twitter15 DATASET

(b) Twitter16 DATASET
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Early Detection Example
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Example subtree of a rumor captured by the algorithm at early stage of propagation 

Ø Bottom-up RvNN: a set of responses supporting the parent posts that deny or question the 
source post.

Ø Top-down RvNN: some patterns of propagation from the root to leaf nodes like 
“support→deny→support” 

Ø Baselines: sequential models may be confused because the supportive key terms such as 
“be right”, “yeah”, “exactly!” dominate the responses, and the SVM-TK may miss 
similar subtrees by just comparing the surface words.
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Conclusion and future work
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￭ Propose a bottom-up and a top-down tree-structured model based on 
recursive neural networks for rumor detection on Twitter. 

￭ Using propagation tree to guide the learning of representations from 
tweets content, such as embedding various indicative signals hidden 
in the structure, for better identifying rumors. 

￭ Results on two public Twitter datasets show that our method 
improves rumor detection performance in very large margins as 
compared to state-of-the-art baselines. 

￭ Future work:
❑ Integrate other types of information such as user properties 

into the structured neural models to further enhance 
representation learning 

❑ Develop unsupervised models due to massive unlabeled data 
from social media.
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