Deep-speare: A Joint Neural Model of Poetic Language, Meter and Rhyme

Jey Han Lau^{1,2}, Trevor Cohn², Timothy Baldwin², Julian Brooke³, and Adam Hammond⁴

¹ IBM Research Australia

² School of CIS, The University of Melbourne

³ University of British Columbia

⁴ Dept of English, University of Toronto

July 17, 2018

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

Creativity

- Can machine learning models be creative?
- ► Can these models compose novel and interesting narrative?
- Creativity is a hallmark of intelligence it often involves blending ideas from different domains.
- ▶ We focus on sonnet generation in this work.

Sonnets

Shall I compare thee to a summer's day? Thou art more lovely and more temperate: Rough winds do shake the darling buds of May, And summer's lease hath all too short a date:

- ► A distinguishing feature of poetry is its *aesthetic forms*, e.g. rhyme and rhythm/meter.
- ▶ Rhyme: {*day*, *May*}; {*temperate*, *date*}.
- Stress (pentameter):

 $S^ S^+$ $S^ S^+$ $S^ S^+$ $S^ S^+$ $S^ S^+$ Shall I compare thee to a summer's day?

Modelling Approach

- ▶ We treat the task of poem generation as a constrained language modelling task.
- Given a rhyming scheme, each line follows a canonical meter and has a fixed number of stresses.
- ▶ We focus specifically on sonnets as it is a popular type of poetry (sufficient data) and has regular rhyming (ABAB, AABB or ABBA) and stress pattern (iambic pentameter).
- We train an unsupervised model of language, rhyme and meter on a corpus of sonnets.

Sonnet Corpus

- We first create a generic poetry document collection using GutenTag tool, based on its inbuilt poetry classifier.
- ▶ We then extract word and character statistics from Shakespeare's 154 sonnets.
- ▶ We use the statistics to filter out all non-sonnet poems, yielding our sonnet corpus.

Partition	#Sonnets	#Words
Train	2685	367K
Dev	335	46K
Test	335	46K

Model Architecture

Language Model (LM)

- ► LM is a variant of an LSTM encoder-decoder model with attention.
- ▶ Encoder encodes preceding contexts, i.e. all sonnet lines before the current line.
- Decoder decodes one word at a time for the current line, while attending to the preceding context.
- ▶ Preceding context is filtered by a selective mechanism.
- ► Character encodings are incorporated for decoder input words.
- Input and output word embeddings are tied.

Pentameter Model (PM)

- ▶ PM is designed to capture the alternating stress pattern.
- Given a sonnet line, PM learns to attend to the appropriate characters to predict the 10 binary stress symbols sequentially.

т	Attention	Prediction
0	Shall I compare thee to a summer's day?	S^-
1	Shall I compare thee to a summer's day?	S^+
2	Shall I compare thee to a summer's day?	S^-
3	Shall I compare thee to a summer's day?	S^+
8	Shall I compare thee to a summer's day?	S^-
9	Shall I compare thee to a summer's day?	S^+

Pentameter Model (PM)

- ▶ PM fashioned as an encoder-decoder model.
- Encoder encodes the characters of a sonnet line.
- ▶ Decoder attends to the character encodings to predict the stresses.
- Decoder states are not used in prediction.
- ► Attention networks focus on characters whose position is monotonically increasing.
- In addition to cross-entropy loss, PM is regularised further with two auxilliary objectives that penalise repetition and low coverage.

Pentameter Model (PM)

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Rhyme Model

- ▶ We learn rhyme in an unsupervised fashion for 2 reasons:
 - Extendable to other languages that don't have pronunciation dictionaries;
 - ► The language of our sonnets is not Modern English, so contemporary pronunciation dictionaries may not be accurate.
- Assumption: rhyme exists in a quatrain.
- ▶ Feed sentence-ending word pairs as input to the rhyme model and train it to separate rhyming word pairs from non-rhyming ones.

Rhyme Model

Shall I compare thee to a summer's day? $\overline{\mathbf{u}}_t$ Thou art more lovely and more temperate: $\overline{\mathbf{u}}_r$ Rough winds do shake the darling buds of May, $\overline{\mathbf{u}}_{r+1}$ And summer's lease hath all too short a date: $\overline{\mathbf{u}}_{r+2}$

$$Q = \{\cos(\overline{\mathbf{u}}_t, \overline{\mathbf{u}}_r), \cos(\overline{\mathbf{u}}_t, \overline{\mathbf{u}}_{r+1}), \cos(\overline{\mathbf{u}}_t, \overline{\mathbf{u}}_{r+2})\}$$
$$\mathcal{L}_{rm} = \max(0, \delta - \operatorname{top}(Q, 1) + \operatorname{top}(Q, 2))$$

- top(Q, k) returns the k-th largest element in Q.
- Intuitively the model is trained to learn a sufficient margin that separates the best pair from all others, with the second-best being used to quantify all others.

Joint Training

- All components trained together by treating each component as a sub-task in a multi-task learning setting.
- Although the components (LM, PM and RM) appear to be disjointed, shared parameters allow the components to mutually influence each other during training.
- ▶ If each component is trained separately, PM performs poorly.

Model Architecture

Evaluation: Crowdworkers

- Crowdworkers are presented with a pair of poems (one machine-generated and one human-written), and asked to guess which is the human-written one.
- ▶ LM: vanilla LSTM language model;
- LM**: LSTM language model that incorporates both character encodings and preceding context;
- LM**+PM+RM: the full model, with joint training of the language, pentameter and rhyme models.

Evaluation: Crowdworkers (2)

Model	Accuracy
LM	0.742
LM^{**}	0.672
LM^{**} +PM+RM	0.532
LM**+RM	0.532

- Accuracy improves LM < LM** < LM**+PM+RM, indicating generated quatrains are less distinguishable.
- Are workers judging poems using just rhyme?
- ► Test with LM**+RM reveals that's the case.
- ► Meter/stress is largely ignored by laypersons in poetry evaluation.

Evaluation: Expert

Model	Meter	Rhyme	Read.	Emotion
LM	$4.00 {\pm} 0.73$	$1.57{\pm}0.67$	2.77±0.67	2.73±0.51
LM^{**}	$4.07 {\pm} 1.03$	$1.53{\pm}0.88$	$3.10{\pm}1.04$	$2.93{\pm}0.93$
LM^{**} +PM+RM	$4.10{\pm}0.91$	$4.43 {\pm} 0.56$	$2.70{\pm}0.69$	$2.90{\pm}0.79$
Human	3.87±1.12	$\bar{4}.10 \pm \bar{1}.35$	4.80±0.48	4.37±0.71

- A literature expert is asked to judge poems on the quality of meter, rhyme, readability and emotion.
- ► Full model has the highest meter and rhyme ratings, even higher than human, reflecting that poets regularly break rules.
- Despite excellent form, machine-generated poems are easily distinguished due to lower emotional impact and readability.
- ► Vanilla language model (LM) captures meter surprisingly well.

Summary

- ▶ We introduce a joint neural model that learns language, rhyme and stress in an unsupervised fashion.
- We encode assumptions we have about the rhyme and stress in the architecture of the network.
- Model can be adapted to poetry in other languages.
- We assess the quality of generated poems using judgements from crowdworkers and a literature expert.
- Our results suggest future research should look beyond forms, towards the substance of good poetry.
- Code and data: https://github.com/jhlau/deepspeare

in darkness to behold him, with a light and him was filled with terror on my breast and saw its brazen ruler of the night but, lo! it was a monarch of the rest

Questions?