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their money

took their

took money

their took

2

666664

s✓ ( )
s✓ ( )
s✓ ( )

...
s✓ ( )

3

777775
argmax z>
z forms a trees.t.
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Straight-through Estimator (STE)

Hinton, 2012; Bengio et al., 2013

Leibniz, 1676

“    ”rsL = J rẑL
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Some Geometry…

Shareholders theirtook money
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