
Sequence-to-sequence Models for
Cache Transition Systems

Xiaochang Peng1, Linfeng Song1, Daniel Gildea1 and
Giorgio Satta2

1 2

AMR

§ “John wants to go”

want-01

boy

go-01

ARG1

ARG0

ARG0

AMR
and

believe-01

op1

formulate-01

op2

after

time

person

ARG0

capable-41

ARG1

have-org-role-91

ARG0-of

company

ARG1

CEO

ARG2

name

name

country

mod

IM

op1

name

name

United States

op1 op2

person

ARG1 innovate-01

ARG2

employ-01

ARG1-of

each

mod

ARG0

ARG0

ARG0

countermeasure

ARG1

strategy

mod

innovate-01

purpose

industry

prep-in

invent-01

op1

company

ARG0

machine

ARG1

compete-01

ARG0-of

ARG1

wash-01

ARG0-of

load-01

ARG1-of

front

mod

After its competitor invented the
front loading washing machine,
the CEO of the American IM
company believed that each of
its employees had the ability for
innovation, and formulated
strategic countermeasures for
innovation in the industry.

Transition-based AMR parsing

§ There has been previous work (Sagae and Tsujii;
Damonte et al.; Zhou et al.; Ribeyre et al.; Wang et
al.) on transition-based graph parsing.

§ Our work introduces a new data structure “cache”
for generating graphs of certain treewidth.

Introduction to treewidth
Gildea, Satta, and Peng

I A B D F G J

K L R M O E

P

C

Q

H

S

N

(a)

ALB LBR BRD RDM DMF MFO FOG

KAL DMP OGE

IKA MPH GEJ

PHC

HCS CSQ SQN

(b)

Figure 2
(a) An optimal tree decomposition of graph G in Figure 1; this is a set of overlapping clusters of
G’s vertices, arranged in a tree. (b) The high-level treelike structure of G becomes apparent when
it is drawn ignoring G’s edges.

An alternative representation of the same tree decomposition is shown in Fig-
ure 2(b), where we focus on the vertices and ignore the edges of the graph. It is easy
to see that the vertex cover and the edge cover conditions in the definition of tree de-
composition are both satisfied by T. As an example of the running intersection property,
note that the vertex S appears in three adjacent nodes of the tree decomposition.

While general tree decompositions are undirected trees, in this article we will work
with rooted, directed tree decompositions, in which one node is designated as the
root, and the children of each node are ordered. We say that a rooted, ordered tree
decomposition of graph G having width k is smooth if each bag contains exactly k + 1
vertices, and each bag contains the same vertices as its parent bag, with exactly one
vertex removed and one vertex added. The tree decomposition in Figure 2(b) is smooth.

The concept of smooth tree decompositions, for standard unrooted tree decompo-
sitions, was introduced by Bodlaender (1996). Throughout this article, we also require
that the root of a smooth tree decomposition contains k + 1 copies of the special symbol
$, with vertices of G being added one at a time in the bags below the root. It is easy to
see that the size of a smooth tree decomposition, i.e., the number of nodes of the tree, is
the number of vertices in the graph plus one.

Lemma 1
Any tree decomposition T of graph G can be transformed into a smooth tree decompo-
sition T0 of G of equal width.

Proof. Let k be the width of T. At each bag having fewer than k + 1 vertices, continue
adding vertices from adjacent bags until all bags have the same size. If two adjacent bags
B1 and B2 end up having the same vertices, collapse B1 and B2 into a single bag, and
merge the children of the two bags in a way that preserves their order. If two adjacent
bags B1 and B2 differ by more than one vertex in their contents, add intermediate bags

5

Complete graph of N
nodes: treewidth N-1

Gildea, Satta, and Peng

w

j s

m

Figure 4
Graph for the semantic representation of the sentence “John wants Mary to succeed”. Vertex w
represents word token wants, vertex j represents John, vertex s represents succeed, and vertex m
represents Mary.

r push(i, C) is parameterized by a position in the cache i 2 [m] and a set of
positions in the cache C ✓ [m] \ {i}. It takes a configuration:

(s, [v1, . . . , vi�1, vi, vi+1, . . . , vm], v|b, E)

and moves to a configuration:

(s|i|vi, [v1, . . . , vi�1, vi+1, . . . , vm, v], b, E0)

E0 = E [{(vk, v) | k 2 C}

Here, we have shifted the next vertex v out of the buffer and moved it into
the last position of the cache. We have also taken the vertex vi appearing in
position i in the cache and pushed it onto the stack s, along with the
integer i recording the position in the cache from which it came. Finally,
we have added some edges to the graph being built, where the new edges
connect the shifted vertex v with some subset of the other vertices in the
cache. This subset is specified by the parameter C.r pop takes a configuration:

(s|i|v, [v1, . . . , vm], b, E),

and moves to a configuration:

(s, [v1, . . . , vi�1, v, vi, . . . , vm�1], b, E)

Here we have popped a vertex v from the stack, along with the integer i
recording the position in the cache that it originally came from. We place v
in position i in the cache shifting the remainder of the cache one position
to the right, and discarding the last element in the cache.

9

treewidth 2A tree: treewidth 1

Introduction to treewidth

small tree width
~ 2.8 on average

large tree width

and

believe-01

op1

formulate-01

op2

after

time

person

ARG0

capable-41

ARG1

have-org-role-91

ARG0-of

company

ARG1

CEO

ARG2

name

name

country

mod

IM

op1

name

name

United States

op1 op2

person

ARG1 innovate-01

ARG2

employ-01

ARG1-of

each

mod

ARG0

ARG0

ARG0

countermeasure

ARG1

strategy

mod

innovate-01

purpose

industry

prep-in

invent-01

op1

company

ARG0

machine

ARG1

compete-01

ARG0-of

ARG1

wash-01

ARG0-of

load-01

ARG1-of

front

mod

Tree decompositionGildea, Satta, and Peng

I A B D F G J

K L R M O E

P

C

Q

H

S

N

(a)

ALB LBR BRD RDM DMF MFO FOG

KAL DMP OGE

IKA MPH GEJ

PHC

HCS CSQ SQN

(b)

Figure 2
(a) An optimal tree decomposition of graph G in Figure 1; this is a set of overlapping clusters of
G’s vertices, arranged in a tree. (b) The high-level treelike structure of G becomes apparent when
it is drawn ignoring G’s edges.

An alternative representation of the same tree decomposition is shown in Fig-
ure 2(b), where we focus on the vertices and ignore the edges of the graph. It is easy
to see that the vertex cover and the edge cover conditions in the definition of tree de-
composition are both satisfied by T. As an example of the running intersection property,
note that the vertex S appears in three adjacent nodes of the tree decomposition.

While general tree decompositions are undirected trees, in this article we will work
with rooted, directed tree decompositions, in which one node is designated as the
root, and the children of each node are ordered. We say that a rooted, ordered tree
decomposition of graph G having width k is smooth if each bag contains exactly k + 1
vertices, and each bag contains the same vertices as its parent bag, with exactly one
vertex removed and one vertex added. The tree decomposition in Figure 2(b) is smooth.

The concept of smooth tree decompositions, for standard unrooted tree decompo-
sitions, was introduced by Bodlaender (1996). Throughout this article, we also require
that the root of a smooth tree decomposition contains k + 1 copies of the special symbol
$, with vertices of G being added one at a time in the bags below the root. It is easy to
see that the size of a smooth tree decomposition, i.e., the number of nodes of the tree, is
the number of vertices in the graph plus one.

Lemma 1
Any tree decomposition T of graph G can be transformed into a smooth tree decompo-
sition T0 of G of equal width.

Proof. Let k be the width of T. At each bag having fewer than k + 1 vertices, continue
adding vertices from adjacent bags until all bags have the same size. If two adjacent bags
B1 and B2 end up having the same vertices, collapse B1 and B2 into a single bag, and
merge the children of the two bags in a way that preserves their order. If two adjacent
bags B1 and B2 differ by more than one vertex in their contents, add intermediate bags

5

Gildea, Satta, and Peng

I A B D F G J

K L R M O E

P

C

Q

H

S

N

(a)

ALB LBR BRD RDM DMF MFO FOG

KAL DMP OGE

IKA MPH GEJ

PHC

HCS CSQ SQN

(b)

Figure 2
(a) An optimal tree decomposition of graph G in Figure 1; this is a set of overlapping clusters of
G’s vertices, arranged in a tree. (b) The high-level treelike structure of G becomes apparent when
it is drawn ignoring G’s edges.

An alternative representation of the same tree decomposition is shown in Fig-
ure 2(b), where we focus on the vertices and ignore the edges of the graph. It is easy
to see that the vertex cover and the edge cover conditions in the definition of tree de-
composition are both satisfied by T. As an example of the running intersection property,
note that the vertex S appears in three adjacent nodes of the tree decomposition.

While general tree decompositions are undirected trees, in this article we will work
with rooted, directed tree decompositions, in which one node is designated as the
root, and the children of each node are ordered. We say that a rooted, ordered tree
decomposition of graph G having width k is smooth if each bag contains exactly k + 1
vertices, and each bag contains the same vertices as its parent bag, with exactly one
vertex removed and one vertex added. The tree decomposition in Figure 2(b) is smooth.

The concept of smooth tree decompositions, for standard unrooted tree decompo-
sitions, was introduced by Bodlaender (1996). Throughout this article, we also require
that the root of a smooth tree decomposition contains k + 1 copies of the special symbol
$, with vertices of G being added one at a time in the bags below the root. It is easy to
see that the size of a smooth tree decomposition, i.e., the number of nodes of the tree, is
the number of vertices in the graph plus one.

Lemma 1
Any tree decomposition T of graph G can be transformed into a smooth tree decompo-
sition T0 of G of equal width.

Proof. Let k be the width of T. At each bag having fewer than k + 1 vertices, continue
adding vertices from adjacent bags until all bags have the same size. If two adjacent bags
B1 and B2 end up having the same vertices, collapse B1 and B2 into a single bag, and
merge the children of the two bags in a way that preserves their order. If two adjacent
bags B1 and B2 differ by more than one vertex in their contents, add intermediate bags

5

graph tree decomposition

Cache transition system

§ Configuration c = ($, η, ', ()
§ Stack $: place for temporarily storing concepts
§ Cache *: working zone for making edges,

fixed size corresponding to the treewidth.
§ Buffer ': unprocessed concepts
§ E: set of already-built edges

Cache transition system
§ Actions

§ SHIFT PUSH(i): shift one concept from buffer to right-
most position of cache, then select one concept (index i)
from cache to stack.

stack cache

$ $ $

buffer

PER want-01 go-01

stack

($,1)

cache

$ $ PER

buffer

want-01 go-01

SHIFT PUSH(1)

Cache transition system
§ Actions

§ POP: pop the top from stack and put back to cache,
then drop the right-most item from cache.

stack

($,1)

cache

$ $ PER

buffer

want-01 go-01

stack cache

$ $ $

buffer

want-01 go-01

Cache transition system
§ Actions

§ Arc(i, l, d): make an arc (with direction d, label l)
between the right-most node to node i. Arc(i,-,-)
represents no edge between them.

stack

($,1), ($,1)

cache

$ PER want-01

buffer

go-01

stack cache

$ PER want-01

buffer

go-01

Arc(1,-,-), Arc(2,L,ARG0)

Example of cache transition

$$

stack cache buffer

PER want-01 go-01$

Action taken: Initialization

Example of cache transition

PER$

stack cache buffer

want-01 go-01

Action taken: SHIFT, PUSH(1)

(1, $)

PER

$

Hypothesis:

Example of cache transition

PER$

stack cache buffer

want-01 go-01

Action taken: SHIFT, PUSH(1)

(1, $)

PER

$

Hypothesis:

Action taken: Arc(1, -, -), Arc(2, -, -)

Example of cache transition

PER

stack cache buffer

want-01 go-01

Action taken: SHIFT, PUSH(1)

(1, $) (1, $)

PER want-01

$

Hypothesis:

Example of cache transition

PER

stack cache buffer

want-01 go-01

Action taken: Arc(1, -, -), Arc(2, L, ARG0)

(1, $) (1, $)

PER want-01

$

ARG0

Hypothesis:

ARG0

Example of cache transition

PER

stack cache
buffer

want-01 go-01

Action taken: SHIFT, PUSH(1)

(1, $) (1, $) (1, $)

PER want-01

ARG0

go-01Hypothesis:

Example of cache transition

Action taken: Arc(1, L, ARG0), Arc(2, R, ARG1)

PER

stack cache buffer

want-01 go-01(1, $) (1, $) (1, $)

PER want-01

ARG0

go-01

ARG0

ARG1
Hypothesis:

ARG0
ARG1

Example of cache transition

$$

stack cache buffer

$

Action taken: POP POP POP

PER want-01

ARG0

go-01

ARG0

ARG1
Hypothesis:

Sequence to sequence models for
cache transition system

§ Concepts are generated from input sentences by
another classifier in the preprocessing step.

§ Separate encoders are adopted for input sentences
and sequences of concepts, respectively.

§ One decoder for generating transition actions.

Seq2seq (soft-attention+features)

John wants to go Per want-01 go-01

... ...

Input sequence Concept sequence

SHIFT PushIndex(1)

SHIFT

Seq2seq (hard-attention+features)

John wants to go Per want-01 go-01

...

Input sequence Concept sequence

ARC L-ARG0

...

NOARC SHIFT PushIndex(1)

Experiments

§ Dataset: LDC2015E86
§ 16,833(train)/1,368(dev)/1,371(test)

§ Evaluation: Smatch (Cai et al., 2013)

AMR Coverage with different
cache sizes

Computational Linguistics Volume xx, Number xx

want-01

person

like-01
ARG0

ARG1

ARG1

name

“John”

name

op1

person

name

“Mary”

name

op1

ARG0

Figure 8
An example AMR graph for the sentence: John wants Mary to like him.

0	

1000	

2000	

3000	

4000	

5000	

6000	

0	 1	 2	 3	 4	 5	 6	 7	 >=8	

Figure 9
The distribution of AMR relative treewidth.

on graph datasets for these representations, with the aim to assess the coverage that our
cache parser provides with different cache sizes.

We first evaluate our algorithm on Abstract Meaning Representation (AMR) (Ba-
narescu et al. 2013). AMR is a semantic formalism where the meaning of a sentence
is encoded as a rooted, directed graph. Figure 8 shows an example of an AMR graph
in which the nodes represent the AMR concepts and the edges represent the relations
between the concepts they connect. AMR concepts consist of predicate senses, named
entity annotations, and in some cases, simply lemmas of English words. AMR relations
consist of core semantic roles drawn from the Propbank (Palmer, Gildea, and Kingsbury
2005) as well as very fine-grained semantic relations defined specifically for AMR. We
use the training set of LDC2015E86 for SemEval 2016 task 8 on meaning representa-
tion parsing (May 2016), which contains 16,833 sentences. This dataset covers various
domains including newswire and web discussion forums.

For each graph, we derive a vertex order corresponding to the English word order
by using the automatically generated alignments provided with the dataset, which align

22

91%

97%

99%

Development results

Model P R F
Soft 0.55 0.51 0.53
Soft+feats 0.69 0.63 0.66
Hard+feats 0.70 0.64 0.67

cache size P R F
4 0.69 0.63 0.66
5 0.70 0.64 0.67
6 0.69 0.64 0.66

Impact of various components Impact of cache size

Main results
Model P R F
Buys and Blunsom (2017) -- -- 0.60
Konstas et al. (2017) 0.60 0.65 0.62
Ballesteros and Al-Onaizan (2017) -- -- 0.64
Damonte et al. (2016) -- -- 0.64
Wang et al. (2015a) 0.70 0.63 0.66
Flanigan et al. (2016) 0.70 0.65 0.67
Wang and Xue (2017) 0.72 0.65 0.68
Lyu and Titov (2018) -- -- 0.74
Soft+feats 0.68 0.63 0.65
Hard+feats 0.69 0.64 0.66

Accuracy on reentrancies

Model P R F
Peng et al., (2018) 0.44 0.28 0.34
Damonte et al., (2017) -- -- 0.41
JAMR 0.47 0.38 0.42
Hard+feats (ours) 0.58 0.34 0.43

Reentrancy example

i - desire-01 live-01 any city

ARG0
ARG0

polarity ARG1

location

$ $ i - desire-01

polarity

ARG0

$ i - desire-01 live-01

ARG1

ARG0

Our hard attention output:

Sentence: I have no desire to live in any city .

Cache arc decisions
creating the reentrancy

(cache size of 5):

JAMR output:

Peng et al. (2018) output:

mod

i - desire-01 live-01 any city

polarity ARG1

location
mod

i - desire-01 live-01 any city

ARG0
polarity

ARG1

location
mod

Conclusion

§ Cache transition system based on a mathematical
sound formalism for parsing to graphs.

§ The cache transition process can be well-modeled
by sequence-to-sequence models.
§ Features from transition states.
§ Monotonic hard attention.

Thank you for listening!
Questions

