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1. Reliability

Inter-rater Intra-rater

Rating Type Q Mean @ Stdev «
b-point 0.2308

0.4014  0.1907
+ normalization 0.2320
+ filtering 0.5059 0.5527  0.0470
Pairwise 0.2385 0.5085  0.2096
+ filtering 0.3912 0.7264 0.0533

Table 1: Measuring inter- and intra-rater reliability with Krippendorff's «.
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(a) Filtering by rater variance. (b) Filtering by item variance.

Figure 1. Ablation analysis on rater and item variance by filtering.

Rating Type Avg. subjective difficulty [1-10]
b-point 4.8

5.69
Table 2: Subjective difficulty, judged by raters.

Pairwise

Difficulties with 5-point ratings:

» Weighing of error types; long sentences with few essential errors

Difficulties with Pairwise ratings (incl. ties):

» Distinction between similar or similarly bad translations
» No normalization for individual biases

» Ties: no absolute anchoring of the quality of the pair

Summary

Are pairwise ratings better for human reinforcement learning in
NMT than standard 5-point ratings?

» Collected & analyzed ~15 ratings for 800 translations.
» Both have comparable inter-/intra-annotator a-agreement.
» Up to 1.1 BLEU improvement with reward estimator

= Best reliability, learnability, and NMT gains for normalized,
filtered 5-point feedback.

Data: http://www.cl.uni-heidelberg.de/statnlpgroup/humanmt/

2. Learnability

Model Feedback Spearman’s p
MSE b-point norm. -0.2193

+ filtering -0.2341
PW Pairwise -0.1310

+ filtering -0.1255

Table 3: Correlation between estimated rewards and TER.

Overcome feedback sparsity with a reward estimator 7).

b-point feedback: standard MSE on scaled ratings.
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Pairwise feedback: predict human preferences Q|- > -| .
LM () = = 3-0lyi = yillog Pulyi > vi]

+Qly} > yillog Pyly? > i,
with the Bradley-Terry model for preferences
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3. Reinforcement Learning

Model Rewards BLEU METEOR BEER
Baseline - 27.0 30.7 59.48
OPL b-point norm.  27.5 30.9 59.72
RL b-point norm.  28.1 31.5 60.21

+ filtering 28.1 31.6 60.29
RL Pairwise 27.8 31.3 59.88

Table 4: NMT domain adaptation (WMT—TED) with offline human feedback.

Neural Machine Translation. Standard 1-layer Encoder-Decoder
with MLP-Attention, pre-trained on 5.9M WMT17 translations from
German to English. Training is continued with weak feedback only.

Off-Policy Learning (OPL) from Direct Rewards. Improve
the MT system from a log L = {(x'"), y_ »(y "))} of rewarded
translations from the logging system.
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» Only logged translations are reinforced, i.e. no exploration

RL from Estimated Rewards. Expected estimated reward max-
imization (REINFORCE), approximated with k samples (—MRT):

R(0) =Eppolylx) [Fo(y)]
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» Softmax temperature controls sharpness of sampling distribution
pp(y|x) = softmax(o/7), i.e. the amount of exploration

» Subtract the running average of rewards from 7 to reduce

variance (baseline control variate)
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