
A Proofs

A.1 Main Proofs

Proposition 1. For any ground-truth pair (x∗,y∗), PQR and QR satisfy the following marginal match
condition and terminal condition:

|y|∏
t=1

PQR(yt | yt−1
1 ) = PR(y | x∗) ∀y ∈ Y (21)

QR(ŷ, eos;y∗) = R(ŷ + eos;y∗)−R(ŷ;y∗) ∀ŷ ∈ Y− (22)

if and only if for any y ∈ Y ,

QR(yt−1
1 , yt;y

∗) =

{
R(yt1;y∗)−R(yt−1

1 ;y∗) + τ log
∑

w∈W exp
(
QR(yt1, w;y∗)/τ

)
, t < |y|

R(yt1;y∗)−R(yt−1
1 ;y∗), t = |y|

(23)

Proof. To avoid clutter, we drop the dependency on x∗ and y∗. The following proof holds for each
possible pair of (x∗,y∗).

Firstly, it is easy to see that the terminal condition in Eqn. (22) exactly corresponds to the t = |y| case
of Eqn. (23), since yt = eos for y ∈ Y . So, we will focus on the non-terminal case next.

Sufficiency For convenience, define VR(yt1) = τ log
∑

w∈W exp
(
QR(yt1, w)/τ

)
. Suppose Eqn. (23)

is true. Then for any y ∈ Y ,

PQR(y) =

|y|∏
t=1

PQR(yt | yt−1
1 )

= exp

(∑|y|
t=1QR(yt−1

1 , yt)− VR(yt−1
1 )

τ

)

= exp

(∑|y|
t=1

[
R(yt1)−R(yt−1

1 )
]

+
∑|y|−1

t=1 VR(yt1)−
∑|y|

t=1 VR(yt−1
1 )

τ

)

= exp

(
R(y)− VR(∅)

τ

)
where VR(∅) denotes VR(yt1) when t = 0 and yt1 is an empty set. Since PQR(y) is a valid distribution
by construction, we have

VR(∅) =
∑
y∈Y

exp

(
R(y)

τ

)
Hence,

PQR(y) =
R(y)/τ∑

y′∈Y R(y′)/τ
= PR(y),

which satisfies the marginal match requirement.

Necessity Now, we show that the specific formulation of QR (Eqn. (23)) is also a necessary condition
of the marginal match condition (Eqn. (21)).

The token-level target distribution can be simplified as

PQR(yt | yt−1
1 ) =

exp
(
QR(yt−1

1 , yt)/τ
)∑

w∈W exp
(
QR(yt−1

1 , w)/τ
) = exp

(
QR(yt−1

1 , yt)− VR(yt−1
1 )

τ

)
.



Suppose Eqn. (21) is true. For any y ∈ Y− and t ≤ |y| and define y′ = yt1+eos and y′′ = yt−1
1 +eos.

Obviously, it follows y′,y′′ ∈ Y . Also, by definition,

PR(y′) = PR(eos | yt1)× PR(yt | yt−1
1 )× PR(yt−1

1 )

PR(y′′) = PR(eos | yt−1
1 )× PR(yt−1

1 )

Then, consider the ratio

PR(y′)

PR(y′′)
=
PR(eos | yt1)× PR(yt | yt−1

1 )×XXXXXPR(yt−1
1 )

PR(eos | yt−1
1 )×XXXXXPR(yt−1

1 )

exp

(
R(y′)−R(y′′)

τ

)
= exp

(
QR(yt1, eos)− VR(yt1)

τ

)
× exp

(
QR(yt−1

1 , yt)−
XXXXXVR(yt−1

1 )

τ

)
/

exp

(
QR(yt−1

1 , eos)−XXXXXVR(yt−1
1 )

τ

)
R(y′)−R(y′′) = QR(yt1, eos)−QR(yt−1

1 , eos)− VR(yt1) +QR(yt−1
1 , yt).

Now, by the terminal condition (Eqn. (22)), we essentially have

QR(yt1, eos) = R(yt1 + eos)−R(yt1) = 0

QR(yt−1
1 , eos) = R(yt−1

1 + eos)−R(yt−1
1 ) = 0

Thus, it follows

R(y′)−R(y′′) = QR(yt−1
1 , yt)− VR(yt1)

⇐⇒ QR(yt−1
1 , yt) = R(yt1)−R(yt−1

1 ) + τ log
∑
w∈W

exp
(
QR(yt1, w)/τ

)
,

which completes the proof.

Corollary 1. Please refer to §3.2 for the Corollary.

Proof. Similarly, we drop the dependency on x∗ and y∗ to avoid clutter. We first prove the equivalence
of Q∗(yt−1

1 , yt) with QR(yt−1
1 , yt) by induction.

• Base case: When t = T , for any y ∈ Y , yT can only be eos. So, by definition, we have

V ∗(yT−1
1 ) = Q∗(yT−1

1 , eos)

⇐⇒ τ log
∑
a∈W

exp
(
Q∗(yT−1

1 , a)/τ
)

= Q∗(yT−1
1 , eos)

=⇒ Q∗(yT−1
1 , a) = −∞, ∀a 6= eos.

Hence,

Q∗(yT−1
1 , yT ) =

{
r(yT−1

1 , eos), if yT = eos

−∞, otherwise

For the first case, it directly follows

Q∗(yT−1
1 , eos) = r(yT−1

1 , eos) = R(yT−1
1 + eos)−R(yT−1

1 ) = QR(yT−1
1 , eos).

For the second case, since only eos is allowed to be generated, the target distribution PQR should
be a single-point distribution at eos. This is equivalent to define

QR(yT−1
1 , a) = −∞, ∀a 6= eos,

which proves the second case. Combining the two cases, it concludes

Q∗(yT−1
1 , a) = QR(yT−1

1 , a), ∀y ∈ Y, a ∈ W.



• Induction step: When 0 < t < T , assume the equivalence holds when k > t, i.e.,

Q∗(yk−1
1 , w) = QR(yk−1

1 , w),∀k > t, w ∈ W.

Then,

Q∗(yt−1
1 , yt) = r(yt−1

1 , yt) + γ E
s′∼ρs

[α log
∑
a∈A

exp
(
Q∗(s′, a)/α

)
]

= r(yt−1
1 , yt) + τ log

∑
a∈W

exp
(
Q∗(yt1, a)/τ

)
(α = τ,A =W)

= r(yt−1
1 , yt) + τ log

∑
a∈W

exp
(
QR(yt1, a)/τ

)
(Q∗(yk1, a) = QR(yk1, a) for k ≥ t)

= QR(yt−1
1 , yt).

Thus, Q∗(yt−1
1 , yt) = QR(yt−1

1 , yt) holds for t ∈ [1, T ].
With the equivalence between QR and Q∗, we can easily prove V ∗ = VR and π∗ = PQR ,

V ∗(yt−1
1 ) = α log

∑
a∈A

exp
(
Q∗(yt−1

1 , a)/α
)

= τ log
∑
a∈W

exp
(
Q∗(yt−1

1 , a)/τ
)

(α = τ,A =W)

= VR(yt−1
1 )

π∗(yt | yt−1
1 ) =

exp
(
Q∗(yt−1

1 , yt)/τ
)∑

w∈W exp
(
Q∗(yt−1

1 , yt)/τ
)

=
exp

(
QR(yt−1

1 , yt)/τ
)∑

w∈W exp
(
QR(yt−1

1 , yt)/τ
)

= PQR(yt | yt−1
1 )

A.2 Other Proofs
We derive the equivalence between the VAML’s objective (Eqn. (17)) and the RAML’s objective (Eqn.
(2)).

CE
(
PQφ‖Pθ

)
=− E

y∼PQφ
logPθ(y)

=− E
y∼PQφ

|y|∑
t=1

logPθ(yt | yt−1
1 )

=−
T∑
t=1

E
yt1∼PQφ (Y t1 )

logPθ(yt | yt−1
1 ) (T is longest possible length)

=
T∑
t=1

E
yt−1
1 ∼PQφ (Yt−1

1 )

[
− E
yt∼PQφ (Yt|yt−1

1 )
logPθ(yt | yt−1

1 )

]

=

T∑
t=1

E
yt−1
1 ∼PQφ (Yt−1

1 )
CE
(
PQφ(Yt | yt−1

1 )‖Pθ(Yt | yt−1
1 )

)
=

T∑
t=1

E
yt−1
1 ∼PQφ (Yt−1

1 )

∑
yt∈W

PQφ(yt | yt−1
1 ) CE

(
PQφ(Yt | yt−1

1 )‖Pθ(Yt | yt−1
1 )

)︸ ︷︷ ︸
const. w.r.t. yt



=
T∑
t=1

E
yt−1
1 ∼PQφ (Yt−1

1 )
E

yt∈PQφ (W |yt−1
1 )︸ ︷︷ ︸

Eyt1∼PQφ
(Yt1)

[
CE
(
PQφ(Yt | yt−1

1 )‖Pθ(Yt | yt−1
1 )

)]

=
T∑
t=1

E
yt1∼PQφ (Yt

1)

[
CE
(
PQφ(Yt | yt−1

1 )‖Pθ(Yt | yt−1
1 )

)]
= E

y∼PQφ (Y)

|y|∑
t=1

CE
(
PQφ(Yt | yt−1

1 )‖Pθ(Yt | yt−1
1 )

)
B Implementation Details

B.1 RAML
In RAML, we want to optimize the cross entropy CE (PR(Y | x∗,y∗)‖Pθ(Y | x∗)). As discussed in
§2.1, directly sampling from the exponentiated pay-off distribution PR(Y | x∗) is impractical. Hence,
normalized importance sampling has been exploited in previous work (Norouzi et al., 2016; Ma et al.,
2017). Define the proposal distribution to be PS(Y | x∗,y∗). Then, the objective can be rewritten as

CE (PR(Y | x∗,y∗)‖Pθ(Y | x∗)) = − E
y∼PS(Y|x∗,y∗)

PR(y | x∗,y∗)
PS(y | x∗,y∗)

logPθ(y | x∗)

= − E
y∼PS(Y|x∗,y∗)

exp(R(y,y∗)/τ)

P̃S(y|x∗,y∗)

Ey′∼PS(Y|x∗,y∗)
exp(R(y′,y∗)/τ)

P̃S(y′|x∗,y∗)

logPθ(y | x∗)

= − E
y∼PS(Y|x∗,y∗)

w(y,y∗)

Ey′∼PS(Y|x∗,y∗)w(y′,y∗)
logPθ(y | x∗)

≈ −
M∑
i=1

w(y(i),y∗)∑M
i=1w(y(i),y∗)

logPθ(y
(i) | x∗),

where w(y,y∗) = exp(R(y,y∗)/τ)

P̃S(y|x∗,y∗) is the unnormalized importance weight, P̃S denotes the unnormalized

probability of PS = P̃S
Z , M is the number of samples used, and y(i) is the i-th sample drawn from the

proposal distribution PS(Y | x∗,y∗).
With importance sampling, the problem turns to what proposal distribution we should use. In the

original work (Norouzi et al., 2016), the proposal distribution is defined by the hamming distance as
used. Ma et al. (2017) find that it suffices to perform N -gram replacement of the reference sentence.
Specifically, PS(Y | x∗,y∗) can be a uniform distribution defined on set Yngram where Yngram is obtained
by randomly replacing an n-gram of y∗ (n ≤ 4).

In this work, we adapt the simple n-gram replacement distribution, denoted as Pngram(Y | x∗,y∗),
which simplifies the RAML objective into

min
θ
−

M∑
i=1

exp
(
R(y(i),y∗)/τ

)∑M
i=1 exp

(
R(y(i),y∗)/τ

) logPθ(y
(i) | x∗)

Following Ma et al. (2017), we make sure the reference sequence is always among the M samples used.

B.2 VAML
As discussed in §4, the VAML training consists of two phases:

• In the first phase, Soft Q-Learning is used to train Qφ based on Eqn. (16). Since Soft Q-Learning
accepts off-policy trajectories, in this work, we use two types of off-policy sequences:

1. The first type is simply the ground-truth sequence, which provides strong learning signals.



2. The second type of sequences is actually drawn from the same n-gram replacement distribution
discussed above. The reason is that in the second training phase, such n-gram replaced trajecto-
ries will be used. Since the learned Qφ won’t be perfect, we hope the exposing Qφ with these
trajectories can improve its accuracy on them, making the second phase of training easier.

Algorithm 1 summarizes the first phase.

Algorithm 1 VAML Phase 1: Soft Q-Learning to approximate Q∗

Require: A Q-function approximator Qφ with parameter φ, and the hyper-parameters τ , M .
1: while Not Converged do
2: Receive a random example (x∗,y∗).
3: Sample M − 1 sequences {y(i)}M−1

i=1 from Pngram(Y | x∗,y∗) and let y(M) = y∗.
4: Compute all the rewards r(yt−1

1 , yt;y
∗) for each y ∈ {y(i)}Mi=1 and t = 1, . . . , |y|.

5: Compute the target Q-values for each y ∈ {y(i)}Mi=1 and t = 1, . . . , |y|

Q̂φ(yt−1
1 , yt;y

∗) = r(yt−1
1 , yt;y

∗) + τ log
∑
w∈W

exp
(
Qφ(yt1, w;y∗)/τ

)
.

6: Compute the Soft-Q Learning loss

LSoftQ =
1

M

M∑
i=1

|y(i)|∑
t=1

∥∥∥Qφ(y(i)t−1

1 , y
(i)
t ;y∗)− Q̂φ(y(i)t−1

1 , y
(i)
t ;y∗)

∥∥∥2

2
.

7: Update Qφ according to the loss LSoftQ.
8: end while

• Once the Qφ is well trained in the first phase, the second phase is to minimize the cross entropy
CE
(
PQφ(Y | x∗,y∗)‖Pθ(Y | x∗)

)
based on Eqn. (17), i.e.,

min
θ

E
y∼PQφ

 |y|∑
t=1

CE
(
PQφ(Yt | yt−1

1 )‖Pθ(Yt | yt−1
1 )

) .
Ideally, we would like to directly sample from PQφ , and perform the optimization. However, we find
samples from PQφ are quite similar to each other. We conjecture this results from both the imperfect
training in the first phase, and the intrinsic difficulty of getting diverse samples from an exponentially
large space when the distribution is high concentrated.

Nevertheless, for this work, we fall back to the same importance sampling method as used in RAML
and use the n-gram replacement distribution as the proposal. Hence, the objective becomes

E
y∼PQφ

 |y|∑
t=1

CE
(
PQφ(Yt | yt−1

1 )‖Pθ(Yt | yt−1
1 )

)
= E

y∼Pngram

 w(y,y∗)

Ey′∼Pngram(Y|x∗,y∗)w(y′,y∗)

|y|∑
t=1

CE
(
PQφ(Yt | yt−1

1 )‖Pθ(Yt | yt−1
1 )

)
≈

M∑
i=1

exp
(
R(y(i),y∗)/τ

)∑M
i=1 exp

(
R(y(i),y∗)/τ

)
|y(i)|∑
t=1

CE
(
PQφ(Yt | y(i)t−1

1 )‖Pθ(Yt | y(i)t−1

1 )
) .

However, we found directly using this objective does not yield improved performance compared to
RAML, mostly likely due to some erratic estimations of Qφ. Thus, we only use this objective for



some step with certain probability κ ∈ (0, 1), leaving others trained by MLE. Formally, define

Jκ(yt1) = E
z∼Bernoulli(κ)

[
zCE

(
PQφ(Yt | yt−1

1 )‖Pθ(Yt | yt−1
1 )

)
− (1− z) logPθ(yt | yt−1

1 )
]
,

the VAML objective practically used is

min
θ

M∑
i=1

exp
(
R(y(i),y∗)/τ

)∑M
i=1 exp

(
R(y(i),y∗)/τ

)
|y(i)|∑
t=1

Jκ(y(i)t

1)

 .
Algorithm 2 summarizes the second phase.

Algorithm 2 VAML Phase 2: Sequence model training with token-level target

Require: A sequence prediction model Pθ with parameter θ, a pre-trained Q-function approximatorQφ,
and hyper-parameters τ , M , κ

1: while Not Converged do
2: Receive a random example (x∗,y∗).
3: Sample M − 1 sequences {y(i)}M−1

i=1 from Pngram(Y | x∗,y∗) and let y(M) = y∗.
4: Compute the VAML loss using

LVAML =
M∑
i=1

exp
(
R(y(i),y∗)/τ

)∑M
i=1 exp

(
R(y(i),y∗)/τ

)
|y(i)|∑
t=1

Jκ(y(i)t

1)

 .
5: Update Pθ according to the loss LVAML.
6: end while

B.3 ERAC
Following Bahdanau et al. (2016), we first pre-train the actor, then train the critic with the fixed actor
and finally fine-tune them together. The specific procedure for training ERAC is

• Pre-training the actor using maximum likelihood training

• Pre-training the critic using Algorithm 3 with the actor fixed

• Fine-tuning both the actor and critic with Algorithm 3

B.4 Hyper-parameters
RAML & VAML The hyper-parameters for RAML and VAML training are summarized in Tab. 5.
We set the gradient clipping value to 5.0 for both the Q-function approximator Qφ and the sequence
prediction model Pθ, except for the sequence prediction model in the captioning task where the gradient
clipping value is set to 1.0.

AC & ERAC As described in §B.3, the training using AC and ERAC involves three phases. The hyper-
parameters used for ERAC training in each phase are summarized in Table 6. In all phases, the learning
rate is halved when there is no improvement on the validation set. We use the same hyper-parameters
for AC training, except that the entropy regularization coefficient τ is 0. Similar to the VAML case,
the gradient clipping value is set to 5.0 for both the actor and the critic, except that we set the gradient
clipping value to 1.0 for the actor in the captioning task.



Algorithm 3 ERAC Algorithm

Require: A critic Qφ(yt−1
1 , yt;y

∗) and an actor πθ(w | yt1) with weights φ and θ respectively, and
hyper-parameters τ , β, λvar, λmle

1: Initialize delayed target critic Qφ̄ with the same weights: φ̄ = φ.
2: while Not Converged do
3: Receive a random example (x∗,y∗).
4: Generate a sequence y from πθ.
5: Compute the rewards r(yt−1

1 , yt;y
∗) for t = 1, . . . , |y|.

6: Compute targets for the critic

Q̂φ̄(yt−1
1 , yt;y

∗) = r(yt−1
1 , yt) + τ H(πθ(· | yt1)) +

∑
w∈W

πθ(w | yt1)Qφ̄(yt1, w;y∗).

7: Compute loss for critic

Lcritic =

|y|∑
t=1

[
Qφ(yt−1

1 , yt;y
∗)− Q̂φ̄(yt−1

1 , yt;y
∗)
]2

+ λvar
∑
w∈W

[
Qφ(yt−1

1 , w;y∗)− Q̄φ(yt−1
1 ;y∗)

]2
,

where Q̄φ(yt−1
1 ;y∗) =

1

|W|
∑
w′∈W

Qφ(yt−1
1 , w′;y∗)

8: Compute loss for actor

Lactor = −

 |y|∑
t=1

∑
w∈W

πθ(w | yt−1
1 )Qφ(yt−1

1 , w;y∗) + τH(πθ(· | yt−1
1 )) + λmle

|y∗|∑
t=1

log πθ(y
∗
t | y∗

t−1
1 )


9: Update critic according to the loss Lcritic.

10: If actor is not fixed, update actor according to the loss Lactor
11: Update delayed target critic: φ̄ = βφ+ (1− β)φ̄
12: end while

Machine Translation Image Captioning
Hyper-parameters VAML-1 VAML-2 RAML VAML-1 VAML-2 RAML

optimizer Adam SGD SGD Adam SGD SGD
learning rate 0.001 0.6 0.6 0.001 0.5 0.5
batch size 50 42 42 32 × 5 32 × 5 32 × 5
M 5 5 5 2 6 6
τ 0.4 0.4 0.4 0.7 0.7 0.7
κ N.A. 0.2 N.A. N.A. 0.1 N.A.

Table 5: Optimization related hyper-parameters of RAML and VAML for two tasks. “VAML-1” and
“VAML-2” indicate the phase 1 and phase 2 of VAML training respectively. “N.A.” means not applicable.
“32 × 5” indicates using 32 images each with 5 reference captions.

C Comparison with Previous Work

The detailed comparison with previous work in shown in Table 7. Under different comparable architec-
tures (1 layer or 2 layers), ERAC outperforms previous algorithms with a clear margin.



Hyper-parameters MT w/ input feeding MT w/o input feeding Image Captioning

Pre-train Actor

optimizer SGD SGD SGD
learning rate 0.6 0.6 0.5
batch size 50 50 32 × 5

Pre-train Critic

optimizer Adam Adam Adam
learning rate 0.001 0.001 0.001
batch size 50 50 32 × 5
τ (entropy regularization) 0.045 0.04 0.01
β (target net speed) 0.001 0.001 0.001
λvar (smoothness) 0.001 0.001 0.001

Joint Training

optimizer Adam Adam Adam
learning rate 0.0001 0.0001 0.0001
batch size 50 50 32 × 5
τ (entropy regularization) 0.045 0.04 0.01
β (target net speed) 0.001 0.001 0.001
λvar (smoothness) 0.001 0.001 0.001
λMLE 0.1 0.1 0.1

Table 6: Hyper-parameters for ERAC training

Algorithm Encoder Decoder BLEUNN Type Size NN Type Size Attention Input Feed

MIXER (Ranzato et al., 2015) 1-layer CNN 256 1-layer LSTM 256 Dot-Prod N 20.73
BSO (Wiseman and Rush, 2016) 1-layer BiLSTM 128 × 2 1-layer LSTM 256 Dot-Prod Y 27.9
Q(BLEU) (Li et al., 2017) 1-layer BiLSTM 128 × 2 1-layer LSTM 256 Dot-Prod Y 28.3
AC (Bahdanau et al., 2016) 1-layer BiGRU 256 × 2 1-layer GRU 256 MLP Y 28.53
RAML (Ma et al., 2017) 1-layer BiLSTM 256 × 2 1-layer LSTM 256 Dot-Prod Y 28.77

VAML 1-layer BiLSTM 128 × 2 1-layer LSTM 256 Dot-Prod Y 28.94
ERAC 1-layer BiLSTM 128 × 2 1-layer LSTM 256 Dot-Prod Y 29.36

NPMT (Huang et al., 2017) 2-layer BiGRU 256 × 2 2-layer LSTM 512 N.A. N.A. 29.92
NPMT+LM (Huang et al., 2017) 2-layer BiGRU 256 × 2 2-layer LSTM 512 N.A. N.A. 30.08

ERAC 2-layer BiLSTM 256 × 2 2-layer LSTM 512 Dot-Prod Y 30.85

Table 7: Comparison of algorithms with detailed architecture information on the IWSTL 2014 dataset for MT.


