

Bayu Distiawan Trisedya¹, Jianzhong Qi¹, Rui Zhang¹, Wei Wang² btrisedya@student.unimelb.edu.au, {jianzhong.qi,rui.zhang}@unimelb.edu.au, weiw@cse.unsw.edu.au ¹The University of Melbourne, ²University of New South Wales

Problem Studied

Goal: Generate natural sentences to describe relationships as represented by RDF triples. Example:

<i>T1:</i>	<flinders< th=""><th>Street</th><th>Station,</th><th>front,</th><th>Federation</th></flinders<>	Street	Station,	front,	Federation
<i>T2</i> :	<flinders< th=""><th>Street</th><th>Station,</th><th>color,</th><th>yellow></th></flinders<>	Street	Station,	color,	yellow>
<i>T3</i> :	<flinders< th=""><th>Street</th><th>Station,</th><th>has, gr</th><th>reen dome></th></flinders<>	Street	Station,	has, gr	reen dome>

Sent: in front of Federation Square

Motivation: Textual Description of Geographic Entities

Generated a sentence from knowledge graph: "Flinders Street Station is a yellow building with a green dome roof located in front of Federation Square"

Motivation: Textual Description For Navigation Instructions

"Walk east on Flinders St/State Route 30 towards Market St; Turn right onto St Kilda Rd/Swanston St"

VS. "Walk east on Flinders St/State Route 30 towards Market St; Turn right onto St Kilda Rd/Swanston St after Flinders Street Station, a yellow building with a green dome."

GTR-LSTM: A Triple Encoder for Sentence Generation from RDF Data

ederation Square>

Flinders Street Station is a yellow building with a green dome roof located

Proposed Model

RDF Data characteristics:

- Contains relationship triples and attribute triples \bullet
- In the form of knowledge graph:
 - ✓ Contains cycle
 - ✓ Intra-triple relationship (relationship between entities in one triple)
 - Inter-triple relationship (relationship between triples)

We propose an encoder-decoder sentence generation model:

- We define Graph-based triple encoder (GTR-LSTM) \bullet
- Standard LSTM is used for the decoder
- Pre-processor is used to mask the entity name in the sentences and triples

Mo Ex

 $\frac{\mathrm{Ad}}{\mathbf{Pr}}$

Graph-based Triple Encoder (GTR-LSTM)

Automatic Evaluation Metric/Dataset BLEU↑ Seen Unseen GKB Seer Model BLSTM 28.0 34.8 38.3 49.8 Existing models |SMT 24.8 32.0 37.1 46.5 TFF 47.8 28.4 33.7 35.9 Adapted Model TLSTM 31.6 36.7 36.5 50.5 58.6 34.1 40.1 40.6 **Proposed Model GTR-LSTM**

Human Evaluation (Scored out of 3; higher scores are preferred)

	Metric/Dataset		Seen		Unseen		GKB			
lodel		Correctness	Grammar	Fluency	Correctness	Grammar	Fluency	Correctness	Grammar	Fluency
xisting models	BLSTM	2.25	2.33	2.29	1.53	1.71	1.68	1.54	1.84	1.84
	SMT	2.03	2.11	2.07	1.36	1.48	1.44	1.81	1.99	1.89
	TFF	1.77	1.91	1.88	1.44	1.69	1.66	1.71	1.99	1.96
dapted Model	TLSTM	2.53	2.61	2.55	1.75	1.93	1.86	2.21	2.38	2.35
roposed Mode	GTR-LSTM	2.64	2.66	2.57	1.96	2.04	1.99	2.29	2.42	2.41

Conclusions

Graph-based encoder

- Captures better information of a knowledge graph
- ✓ Maintains the structure of input RDF triples
- ✓ Handles cycles to capture the global information of a knowledge graph

- states of all vertices are updated based on their

METEOR				TER↓	
n	Unseen	GKB	Seen	Unseen	GKB
3	29.4	28.6	49.9	64.9	65.8
1	29.1	28.5	52.3	62.2	67.8
9	30.5	28.9	49.9	61.2	58.4
5	30.7	30.1	47.7	60.4	57.2
6	32.0	34.6	41.7	57.9	50.6