A Graph-to-Sequence Model for AMR-to-Text Generation

Contribution

- Introduce graph recurrent network (GRN) for modeling AMR graph.
- It shows better performance than a sequential LSTM encoder on linearized AMRs.
- We release our code at https://github.com/freesunshine0316/ neural-graph-to-seq-mp.

Baseline: sequence-to-sequence

Linearization and Anonymization

describe :arg0 (person_0 :name (name :op1 Ryan)) :arg1 person_0 :arg2 genius

Drawbacks:

- Serialization causes loss of structural information. Closely-related nodes, such as parents, children and siblings can be far away after serialization.
- Anonymization requires manual work for defining heuristic rules. The rules have to be adapted for new domains.

Leveraging large-scale automatic data (Konstas et al., 2017)

Data: D_a : automatic training data, D_g : gold
training data, <i>D_v</i> : devset
Input: T: total steps of automatic training, E:
fine-tune after the number of steps
for $t \in [1 T]$ do
pretrain with D_a for one step;
if $t\% D_a == 0$ or $t\%E == 0$ then
fine-tune with D_g ;
evaluate with D_v ;
end
end

Linfeng Song¹, Yue Zhang^{2,4}, Zhiguo Wang³ and Daniel Gildea¹ ¹University of Rochester, ²Singapore University of Technology and Design, ³IBM Research, ⁴Westlake Institute for Advanced Study

Graph recurrent network (GRN)

We model the graph state $(g = \{h^j\}|_{v_j \in V})$ via state transition, h^j incorporates larger context through the gated (LSTM-based) state transition.

$$c_{t}^{j}, h_{t}^{j} = \text{LSTM}([x_{j}^{i}; x_{j}^{o}], [h_{j}^{i}; h_{j}^{o}], c_{t-1}^{j})$$

where x_i^i and x_i^o are the sum of all incoming and outgoing edge representations of v_i , respectively. Similarly, h_i^i and h_i^o are the sum of the hidden states of all incoming and outgoing neighbors:

$$\begin{aligned} x_{j}^{i} &= \sum_{(i,j,l)\in E_{in}(j)} x_{i,j}^{l}; \quad x_{j}^{o} &= \sum_{(j,k,l)\in E_{out}(j)} x_{j,k}^{l} & 24.0 \\ h_{j}^{i} &= \sum_{(i,j,l)\in E_{in}(j)} h_{t-1}^{i}; \quad h_{j}^{o} &= \sum_{(j,k,l)\in E_{out}(j)} h_{t-1}^{k} & 20.0 \\ & 18.0 \\ & 18.0 \\ & 16.0$$

The representation vector $x'_{i,j}$ for edge (i, j, l) is calculated by the edge label embedding e_l and the concept of the other node e_i .

Copy mechanism

LDC • Up

> Mo PE S

> > M

14.0¥

12.0

Main results

C2015E86, Train/Dev/Test: 16833	/1368/1371
to 2M raw data (Gigaword) parsed	by JAMR
lodel	BLEU
BMT	26.9
NRG	25.6
ree2Str	23.0
1Seq2seq+Anon	22.0
raph2seq+copy	22.7
raph2seq+charLSTM+copy	23.3
1Seq2seq+Anon (200K)	27.4
1Seq2seq+Anon (2M)	32.3
1Seq2seq+Anon (20M)	33.8
eq2seq+charLSTM+copy (200K)	27.4
eq2seq+charLSTM+copy (2M)	31.7
raph2seq+charLSTM+copy (200K)	28.2
raph2seq+charLSTM+copy (2M)	33.0 33.6

graph encoder.

Development experiments

lodel	BLEU	Time
eq2seq	18.8	35.4s
eq2seq+copy	19.9	37.4s
eq2seq+charLSTM+copy	20.6	39.7s
iraph2seq	20.4	11.2s
iraph2seq+copy	22.2	11.1s
iraph2seq+Anon	22.1	9.2s
<pre>iraph2seq+charLSTM+copy</pre>	22.8	16.3s

Example Outputs

(p / possible-01 :polarity -
:ARG1 (I / look-over-06
:ARGO (w / we)
:ARG1 (a / <u>account</u> -01
:ARG1 (w2 / war-01
:ARG1 (c2 / country :wiki "Japan"
:name (n2 / name :op1 "Japan"))
:time (p2 / previous)
:ARG1-of (c / call-01 :mod (s / so)))
:mod (o / <u>old</u>))))
Lin : possible :polarity - :arg1 (look-over :arg0 we :arg1 (
<u>account</u> :arg1 (war :arg1 (country :wiki japan :name (name
:op1 japan)) :time previous :arg1-of (call :mod so)) :mod
<u>old</u>))
Ref : we can n't look over the old accounts of the previous
so-called anti-japanese war .
S2S : we can n't be able to account the past drawn out of japan
's entire war .
G2S: we can n't be able to do old accounts of the previous
and so called japan war.
G2S+CP: we can n't look-over the old accounts of the pre-
vious so called war on japan .
(p / provide-01
:ARG0 (a / <u>agree</u> -01)
:ARG1 (a2 / and
:op1 (s / staff
:prep-for (c / center :mod (r / research-01)))
:op2 (f / fund-01
:prep-for c)))
Lin: provide :arg0 <u>agree</u> :arg1 (and :op1 (staff :prep-for (
center :mod research)) :op2 (fund :prep-for center))
Ref : the agreement will provide staff and funding for the re-
search center .
$\mathbf{S2S}$: agreed to provide research and institutes in the center .
G2S : the agreement provides the staff of research centers and
funding .
G2S+CP : the agreement provides the staff of the research
center and the funding .