

Introduction

- Intuition: Relations between entities in a document help to link these entities to a knowledge base
- Previous work: Preprocess text to produce relations (e.g., using a co-reference system) [CR13]

Our General Model: A CRF

We assign each mention m_i an entity e_i . Let $D = \{m_1, ..., m_n\}$ be a document and $E = \{e_1, ..., e_n\}$

• Our CRF:

$$q(E|D) \propto \exp\left\{\sum_{i=1}^{n} \underbrace{\Psi(e_i, m_i)}_{\text{local score}} + \sum_{i \neq j} \sum_{\substack{k \text{ how likely the relation holds for the pair compatibility s}}} \underbrace{\alpha_{ij1} \Phi_1(e_i, e_j, D)}_{\alpha_{ij2} \Phi_2(e_i, e_j, D)} \\ e_i, m_i \underbrace{\alpha_{ij2} \Phi_2(e_i, e_j, D)}_{\alpha_{ij3} \Phi_3(e_i, e_j, D)} \\ e_i, m_i \underbrace{\alpha_{ij3} \Phi_3(e_i, e_j, D)}_{\alpha_{ij3} \Phi_3(e_i, e_j, D)} \\ e_i, m_i \underbrace{\alpha_{ij3} \Phi_3(e_i, e_j, D)}_{\text{Relation embedding Entity entry entry of a diagonal matrix}} \\ e_i = \sum_{\substack{k \in i, i \in I, D}} \underbrace{\alpha_{ij2} \Phi_2(e_i, e_j, D)}_{\text{Relation embedding Entity entry en$$

Improving Entity Linking by Modeling Latent Relations between Mentions Phong Le¹ and Ivan Titov^{1,2} erc ¹University of Edinburgh ²University of Amsterdam blished by the European Com **Relation weights: Two versions Experiments** F1 micro score. Mean and 95% confidence interval of 5 runs. • **Rel-norm** (Relation-wise normalization): $\alpha_{ijk} = \frac{\exp\left\{f^T(m_i)\mathbf{D}_k\right\}}{\sum_{k'} \exp\left\{f^T(m_i)\mathbf{D}_k\right\}}$ • In-domain: 94.5 **LBP** oracle Aida-B 88.7 93.589.0 e_i,m_i 91.0 91.5 92.22 ± 0.14 normalize over relations: $\alpha_{ii1} + \alpha$ 92 92.41 ± 0.19 G&H rel-norm $\mathbf{93.07} \pm 0.27$ Intuitively, α_{ijk} is the probability of assigning a k-th relation to a 92.89 ± 0.21 mention pair (m_i, m_j) . • Out-of-domain: • Ment-norm (Mention-wise normalization): West_Germany Germany_national ACE2004 AQUAINT $\alpha_{ijk} = \frac{\exp\left\{f^T(m_i)\mathbf{D}_k f(m_j)\right\}}{\sum_{j'} \exp\left\{f^T(m_i)\mathbf{D}_k f(m_{j'})\right\}}$ football_team Germany_national_ 85 81 basketball team 56 80 82 86 **England** beat West Germany e₁,m₁ 88 88.5 ± 0.3 88.5 ± 0.4 e,,m e,,m 86.7 ± 0.7 87.9 ± 0.3 88.3 ± 0.6 89.9 ± 0.8 e_n,m normalize over mentions: 88.9 ± 1.0 88.4 ± 0.4 $\alpha_{i12} + \alpha_{i22} + \dots + \alpha_{ii2} + \dots + \alpha_{in2} = 1$ Analysis: Similar to multi-head attention [VSP⁺17]. on Friday, Liege police said in rel-norm ment-norm (1) missing teenagers in **Belgium**. (2) UNK **BRUSSELS** UNK (3) UNK Belgian police said on **Estimation and Training** (4), " a **Liege** police official told (5) police official told **Reuters**. . . . (6) eastern town of Liege on Thursday. (7) home village of UNK (8) link with the Marc Dutroux case, the • Using Loopy Belief Propagation (LBP) [GH17]: (9) which has rocked **Belgium** in the past **I** $\hat{q}_i(e_i|D) \approx \max_{\substack{e_1,\dots,e_{i-1}\\e_{i+1},\dots,e_n}} q(E|D)$ • Hard to interpret relations induced by rel-norm The final score for each mention $\underbrace{\Phi_k(e_i, e_j, D)}$ relation 1, but they are quite different. $\rho_i(e) = g(\hat{q}_i(e|D), \hat{p}(e|m_i))$ pair-wise score where g is a 2-layer neural network. \hat{p} is mention-entity hyperlink Conclusions score count statistics from Wikipedia, a large Web corpus and YAGO. • We minimize the following ranking loss: • Inducing multiple relations between entities is beneficial for entity linking. $L(\theta) = \sum_{D \in \mathcal{D}} \sum_{m_i \in D} \sum_{e \in C_i} h(m_i, e)$ • Our system does not use any supervision for relations and uses minimal ,m amount of feature engineering. $h(m_i, e) = \max\left(0, \gamma - \rho_i(e_i^*) + \rho_i(e)\right)$ • Future work: Injecting linguistic knowledge (discourse and syntax). Reference

nbedding

Xiao Cheng and Dan Roth, *Relational inference for wikification*, EMNLP, 2013. [CR13] Octavian-Eugen Ganea and Thomas Hofmann, *Deep joint entity* [GH17] disambiguation with local neural attention, EMNLP, 2017.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin, Attention is all you need, NIPS, 2017.

$$\left\{ egin{array}{l} & f(m_j) \\ egin{array}{l} & J_{k'}f(m_j) \end{array}
ight\}$$

$$\alpha_{ij2} + \alpha_{ij3} = 1$$

Methods	
Chisholm and Hachey (2015)	Γ
Guo and Barbosa (2016)	
Globerson et al. (2016)	
Yamada et al. (2016)	
Ganea and Hofmann (2017)	
rel-norm	
ment-norm	
ment-norm $(K = 1)$	

Methods	MSNBC
Milne and Witten (2008)	78
Hoffart et al. (2011)	79
Ratinov et al. (2011)	75
Cheng and Roth (2013)	90
Guo and Barbosa (2016)	92
Ganea and Hofmann (2017)	93.7 ± 0.1
rel-norm	92.2 ± 0.3
ment-norm	93.9 \pm 0.2
ment-norm $(K = 1)$	93.2 ± 0.3

• Ment-norm: relation 1 is similar to coreference. Relation 2 and relation 3 complement

Source code