

Abstract

- This work focuses on incorporating **sentiment** information into task-oriented dialogue systems.
- Current end-to-end approaches only consider user semantic inputs in learning and under-utilize other user information.
- But the ultimate evaluator of dialog systems is the end-users and their sentiment is a direct reflection of **user satisfaction** and should be taken into consideration.
- Therefore, we propose to include user sentiment obtained through multimodal information (acoustic, dialogic and textual), in the end-to-end learning framework to make systems more **user-adaptive** and effective.
- We incorporated user sentiment information in both **supervised** and reinforcement learning settings.
- In both settings, adding sentiment information reduced the dialog length and • improved the task success rate on a bus information search task.

Multimodal Sentiment Detector

- ✤ We manually annotated 50 dialogs with 517 conversation turns to train this sentiment detector. The annotated set is open to public.
- Prediction made by the detector will be used in the supervised learning and reinforcement learning.
- Three sets of features: 1) Acoustic features; 2) Dialogic features; 3) Textual features.
- Dialogic features include: 1) Interruption; 2) Button usage; 3) Repetitions; 4) Start over. These four categories of dialog features are chosen based on the previous literature and the observed statistics in the dataset.

Model	Avg. of F-1	Std. of F-1	Max of F-1
Acoustic features only	0.635	0.027	0.686
Dialogic features only	0.596	0.001	0.596
Textual features only *	0.664	0.010	0.685
Textual + Dialogic *	0.672	0.011	0.700
Acoustic + Dialogic *	0.680	0.019	0.707
Acoustic + Textual	0.647	0.025	0.686
Acoustic + Dialogic + Text *	0.686	0.028	0.756

Dialogic Features	Relative Rank of importance
total interruptions so far	1
interruptions	2
total button usages so far	3
total repetitions so far	4
repetition	5
button usage	6
total start over so far	7
start over	8

Table 1. Sentiment detector performance.

Table 2. Feature importance ranking.

Supervised Learning

- ↔ *Hybrid Code Network (HCN)* (Williams et al. (2017)) is adopted as the baseline model
- No action masks (bit vectors indicating allowed actions) are used, making our model end-to-end trainable and less labor-intensive.
- ✤ We added two sets of features to the baseline model: 1) eight raw dialogic features; 2) one-hot vector of the sentiment labels predicted by the sentiment detector.
- HCN with predicted sentiment labels performs the best, while adding raw dialogic features doesn't help because the predicted labels is more condensed than the noisy raw features..

Model	Weighted F-1	Dialog Ac
HCN	0.4198	6.05%
HCN + raw dialogic features	0.4190	5.79%
HCN + predicted sentiment label*	0.4261	6.55%

Table 3. Supervised learning performance.

Sentiment Adaptive End-to-End Dialog Systems

Weiyan Shi, Zhou Yu

University of California, Davis wyshi@ucdavis.edu, joyu@ucdavis.edu

Model Architecture

Figure 1. Proposed sentiment adaptive end-to-end dialog framework

- * A sentiment detector is built on an annotated subset and is used to predict sentiment labels and sentiment scores for the supervised and reinforcement learning.
- Supervised learning uses the predicted sentiment labels from the sentiment detector as additional context features for the training.
- Reinforcement learning simulates the dialogs and uses the predicted sentiment scores from the sentiment detector as immediate rewards to guide the training.
- ✤ The whole model is end-to-end trainable and user-adaptive.

Reinforcement Learning

User simulator

- Reinforcement learning requires feedback from the environments. So we created a user simulator and simulated user sentiment by sampling from the real data.
- Summary statistics, e.g. how many times one entity has been asked, are used to compare different dialogs.

Figure 2. How to take samples and simulate user sentiment

- Sentiment scores used in the reward functions
- Four different rewards functions with sentiment scores. 1) baseline; 2) SRRS: baseline + sentiment score from random samples; 3) SRRP: baseline + penalty for repetitions; 4) SRRIP: baseline + penalties for both repetition and interruption.
- **Dialog length:** By adapting to user sentiment, all models with sentiment reward reduces the average dialog length.
- Success rate: SRRIP performs the best. By adding penalties, the model covers more data points, and improves the success rate and convergence speed.

Model	Convergent
	success rate
Baseline	0.924
SRRS	0.938*
SRRP	0.941*
SRRIP	0.943 *

Table 4. RL convergent success rate.

number of dialogs trained Figure 3. Dialog length in RL.

else

else end if end if

end if

Reinforcemer learning

Response

Dataset & Discussion

***** Dataset: DSTC1, a bus information search task.

- 1) Sentiment Detector: trained with a subset of 50 dialogs from DSTC1, with sentiment annotated under context.
- 2) Supervised Learning: trained and test with the entire DSTC1 set, with sentiment features predicted by the sentiment detector.
- 3) Reinforcement Learning: dialogs of the same task are simulated. The user sentiments are simulated by sampling from a subset of DSTC1.

***** The learned dialog policy is more sentiment adaptive

the model learns to adapt to user sentiment.

more detailed error-handling strategy instead of a general one.

***** Further improvements

- 1) Include more channels, such as vision, to improve the sentimen detector;
- 2) Create a similarity measure for the dialog states vectors and improve sentiment simulation
- 3) Reward shaping in reinforcement learning.

Conclusion

- training.
- ✤ We included sentiment information directly as a context feature in the supervised learning framework and used sentiment scores as immediate rewards in the reinforcement learning setting.
- * Experiments suggest that incorporating user sentiment is helpful in reducing the dialog length and increasing the task success rate in both SL and RL settings. • We believe this approach can be easily generalized to other domains given its end-to-end training procedure and task independence.

References

- Jason Williams, Kavosh Asadi, and Geoffrey Zweig. 2017. Hybrid code networks: Practical and efficient end-to-end dialog control with supervised and reinforcement learning. In Proceedings of 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017). Association for Computational Linguistics.
- Dario Bertero, Farhad Bin Siddique, Chien-Sheng Wu, Yan Wan, Ricky Ho Yin Chan, and Pascale Fung. 2016. Real-time speech emotion and sentiment recognition for interactive dialogue systems. In EMNLP, pages 1042–1047.
- Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong Li, Jianfeng Gao, and Yun-Nung Chen. 2016. A user simulator for task-completion dialogues. arXiv preprint arXiv:1612.05688.
- Stefan Ultes, Paweł Budzianowski, Inigo Casanueva, Nikola Mrksic, Lina Rojas-Barahona, Pei-Hao Su, Tsung-Hsien Wen, Milica Gasic, and Steve Young. 2017. Domain-independent user satisfaction reward estimation for dialogue policy learning. In Proc. Interspeech, pages 1721–1725.

- The intuition behind the good performance of models with user sentiment is that
- For example, when the system detects negative sentiment, it will choose to give a

t	

Sentiment Adaptive Sys-	Baseline System without	
tem	Sentiment	
SYS: The <route>.</route>	SYS: The <route>.</route>	
Where would you like to	Where would you like to	
leave from?	leave from?	
USR: Yeah [negative sen-	USR: Yeah	
timent]		
SYS: Where are you leav-	SYS: Right. Where would	
ing from? For example,	you like to leave from?	
you can say, <place>.</place>		

Table 5. Sentiment adaptive example.

• We proposed to detect user sentiment from multimodal channels and incorporate the detected sentiment as feedback into adaptive end-to-end dialog system