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Motivation

e (Good translation preserves the meaning of the sentence.

e Neural MT learns to represent the sentence.
o |s the representation “meaningful” in some sense?



O | was given a card by her in the garden

O In the garden , she gave me a card

O She gave me a card in the garden

O She was given a card by me in the garden
O In the garden , | gave her a card

O | gave her a card in the garden
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Gist of our idea:

1. Train variants of NMT to obtain sentence representations.
2. Evaluate all such representations “semantically”.

3. Relate performance in MT and in “semantics”.



Evaluating sentence representations

e Evaluation through classification.
e Evaluation through similarity.
e Evaluation using paraphrases.

e SentEval (Conneau et al., 2017)
o prediction tasks for evaluating sentence embeddings
o focus on semantics (recently, “linguistics” task added, too).

e HyTER paraphrases (Dreyer and Marcu, 2014)



Evaluation through classification

SentEval Classification Tasks

an ambitious and moving but bleak film .

and that makes all the difference .

rarely , @ movie is more than a movie . P
the movie is well done , but slow .

the pianist is polanski 's best film .
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Evaluation through classification

SentEval Classification Tasks

an ambitious and moving but bleak film .
and that makes all the difference .

;

rarely , a movie is more thanamovie. — [ | [l | |

the movie is well done , but slow .
the pianist is polanski 's best film .

;
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Evaluation through classification

SentEval Classification Tasks

an ambitious and moving but bleak film .
and that makes all the difference .

rarely , @ movie is more than a movie . —>» [ W] >
the movie is well done , but slow .
the pianist is polanski 's best film .

;
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e Solo: movies sentiment, product review polarity, question type...
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Evaluation through classification

SentEval Classification Tasks

A square full of people and life . > ST
The square is busy . —7
The couple is at a restaurant . e S, @
A cute couple at a club -
A white dog bounding through snow -
> C v

e Solo: movies sentiment, product review polarity, question type...
e Paired: natural language inference, semantic equivalence



Evaluation through classification

SentEval Classification Tasks

A square full of people and life . > ST
The square is busy . —7
The couple is at a restaurant . e S, @
A cute couple at a club -
A white dog bounding through snow -
> C v

e Solo: movies sentiment, product review polarity, question type...
e Paired: natural language inference, semantic equivalence

e 10 classification tasks in total, we report them as “AvgAcc”
o 4k-55k training examples, with testset or 10-fold crosseval.



Evaluation through similarity

e 7/ similarity tasks: pairs of sentences + human judgement

o with training set, sent. similarity predicted by regression,

o without training set, cosine similarity used as sent. sim.,

o ultimately, the predicted sent. similarity is correlated with
the golden truth.

® [n sum, we report them as “AvgSim”.



Evaluation using paraphrases: the data

e HyTER: ~200 sentences, e COCO: 5k images, 5
500 translations each captions each
N
MPETNESARELE LR, EN—TFHHEHT.

the deep cut and halter golden swimwear weighs half kilogram
selling at ten million JPY.

¥10,000,000 is the retail value for the low-cut gold bathing suit
with a low back, and the weight is 5 hundred g.

at the weight of five hundred grams, the low cut, halter swimsuit
made up of gold will sell at ten million Japanese Yen (JPY).

(Dreyer and Marcu, 2014)




Evaluation using paraphrases: the data

e HyTER: ~200 sentences, e COCO: 5k images, 5
500 translations each captions each

I

a person is feeding a donut to the cat.

a cat being fed a donut by someone
in a grey shirt.

a cat nibbles on a sprinkled donut
that is being fed by the owner.
a grey cat biting into a frosted donuts

a cat is eating a donut from a

http://cocodataset.org/#explore 2id=78026 person's hand.
(Lin et al., 2014)



http://cocodataset.org/#explore?id=78026

Evaluation using paraphrases: the metrics




Cluster separation: Davies-Bouldin index
R12 —
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For each cluster,
find the least well-
separated one

(Davies and Bouldin, 1979)



Paraphrase retrieval task (NN)

° Retrieve the
o .9 nearest neighbor
« N and check
° . o whether it lies in
e the same cluster




Classification task

1. Remove some
points from
the clusters.

2. Train an LDA
classifier with
the remaining
points.

3. Classify the
removed
points back.




Sequence-to-sequence with attention

e Bahdanau et al. (2014) S1 [ 89 [—>{ 53 - -~ »{ST"
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Ways of getting sentence embeddings

e final state
® max/average pooling ]
® inner attention |
o
i e oo e e+
i ﬁt
1 1

SIE]
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Ways of getting sentence embeddings

e final state
® max/average pooling

® |nner attention ?
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Multi-head inner attention

e Liuetal (2016), Liet al.

(2016), Lin et al. (2017)

e ;. weight of the /" encoder M,y | M |M3|My| = MT
state for the M column of M" F

e concatenate columns of M' N Y AR
— sentence embedding e i

® linear projection of columns 7 Th—; Th_}f’) t =
to control embedding size ; f f




Proposed NMT architectures
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encoder
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Proposed NMT architectures

Transformer decoder

5151

_decoder _ — KT =T
encoder
y T
21 22/ (23 Qo

Transformer encoder

TRF-ATTN-ATTN
Transformer (Vaswani et al., 2017)

with inner attention



Evaluated NMT models

® model architectures:

O O O O

©)

FINAL, FINAL-CTX: no attention

AVGPOOL, MAXPOOL.: pooling instead of attention
ATTN-CTX: inner attention, constant context vector
ATTN-ATTN: inner attention, decoder attention
TRF-ATTN-ATTN: Transformer with inner attention

e translation from English (to Czech or German), evaluating
embeddings of English (source) sentences

©)
©)

en—cs: CzEng 1.7 (Bojar et al., 2016)
en—de: Multi30K (Elliott et al., 2016; Helcl and Libovicky, 2017)



Sample Results — translation quality en—cs

Manual Manual

Model Heads |BLEU (> other) |(z other)

,Bahdanau“ |ATTN — 22.2 50.9 93.8

compound ATTN-ATTN 8 18.4 42.5 88.6

attention | ATTN-ATTN 4/ 171 — —

inner attention + | \rr\_cTx 4 161 31.7 77.9
,Cho

,Cho“ | FINAL-CTX — 15.5 — —

ATTN-ATTN 1 14.8 27.3 71.7

,Sutskever” | FINAL — 10.8 — —

Selected models trained for translation from English to Czech.
embedding size is 1000 (except ATTN).

The




Manual Manual

Model Heads |BLEU (> other) |(z other)

,Bahdanau“ |ATTN — 22.2 50.9 93.8

compound ATTN-ATTN 8 18.4 42.5 88.6

attention | ATTN-ATTN 4/ 171 — —

inner attention + | \rr\_cTx 4 161 31.7 77.9
,Cho

,Cho“ [FINAL-CTX — 15.5 — —

ATTN-ATTN 1 14.8 27.3 71.7

,Sutskever” | FINAL — 10.8 — —

Selected models trained for translation from English to Czech.
embedding size is 1000 (except ATTN).

The

Sample Results — translation quality en—cs

<

BLEU is
consistent
with human
evaluation.




Sample Results — translation quality en—cs

Manual Manual
Model Heads |BLEU (> other) | (2 other)
,Bahdanau“ |ATTN — 22.2 50.9 93.8
compound | ATTN-ATTN 8| 184 425 88.6 Attention In
attention | ATTN-ATTN 4 171 — — the encoder
inner attention +
Chot |ATTN-CTX 4/ 161 31.7 77.9 helps
Cho* | FINAL-CTX —| 155 _ _ translation
ATTN-ATTN 1 148 27.3 7.7 quality.
SSutskever” | FINAL — 10.8 — —

Selected models trained for translation from English to Czech. The
embedding size is 1000 (except ATTN).



Sample Results — translation quality en—cs

Manual Manual
Model Heads |BLEU (> other) | (z other)
,Bahdanau“ |ATTN — 22.2 50.9 93.8
compound |ATTN-ATTN 8| 184 42.5 88.6
attention | ATTN-ATTN 4 171 — — :
inner attention + MOre attentlon
Cho* ATTN-CTX 4 16.1 31.7 77.9 heads
,Cho" | FINAL-CTX — 15.5 — — o better
ATTN-ATTN 1 14.8 27.3 71.7 translation
Sutskever® | FINAL — 10.8 _ _ .
: quality.

Selected models trained for translation from English to Czech. The
embedding size is 1000 (except ATTN).



Sample Results — representation eval. en—cs

Model Size |Heads i:g;i‘éal i\e/ggiir;al (I;Z;as?ggilsﬁ:cy
(COCO)
InferSent 4096 |— 81.7 0.70 31.58
GloVe bag-of-words {300 |— 75.8 0.59 34.28
FINAL-CTX (“Cho®) {1000 |— 74.4 0.60 23.20
ATTN-ATTN 1000 |1 73.4 0.54 21.54
ATTN-CTX 1000 |4 72.2 0.45 14.60
ATTN-ATTN 1000 |4 70.8 0.39 10.84
ATTN-ATTN 1000 |8 70.0 0.36 10.24

Selected models trained for translation from English to Czech. InferSent and GloVe-
BOW are trained on monolingual (English) data.



Sample Results — representation eval. en—cs

Model Size |Heads 253;\%?' 233;?3?' Z:g?zgiifzcy
(COCO)
InferSent 4096 |— 81.7 0.70 31.58
GloVe bag-of-words [300 |— 75.8 0.59 34.28
FINAL-CTX (“Cho*) [1000 |— 74.4 0.60 23.20
ATTN-ATTN 1000 |1 73.4 0.54 21.54
ATTN-CTX 1000 |4 72.2 0.45 14.60
ATTN-ATTN 1000 |4 70.8 0.39 10.84
ATTN-ATTN 1000 |8 70.0 0.36 10.24

<

Baselines
are hard to
beat.

Selected models trained for translation from English to Czech. InferSent and GloVe-
BOW are trained on monolingual (English) data.




Sample Results — representation eval. en—cs

Model Size |Heads iﬁg;i‘éal i\?ggizn\"’nal (I;Z;Z?ggifascy
(COCO)
InferSent 4096 |— 81.7 0.70 31.58
GloVe bag-of-words (300 |— 75.8 0.59 34.28
FINAL-CTX (“Cho") 1000 |— 74.4 0.60 23.20
ATTN-ATTN 1000 |1 73.4 0.54 21.54
ATTN-CTX 1000 |4 72.2 0.45 14.60
ATTN-ATTN 1000 |4 70.8 0.39 10.84
ATTN-ATTN 1000 |8 70.0 0.36 10.24

<

Attention
harms the
performance.

Selected models trained for translation from English to Czech. InferSent and GloVe-
BOW are trained on monolingual (English) data.




Sample Results — representation eval. en—cs

Model Size |Heads iﬁg;i‘éal i\?ggizn\"’nal (I;Z;Z?ggifascy
(COCO)
InferSent 4096 |— 81.7 0.70 31.58
GloVe bag-of-words (300 |— 75.8 0.59 34.28
FINAL-CTX (“Cho") 1000 |— 74.4 0.60 23.20
ATTN-ATTN 1000 |1 73.4 0.54 21.54
ATTN-CTX 1000 |4 72.2 0.45 14.60
ATTN-ATTN 1000 |4 70.8 0.39 10.84
ATTN-ATTN 1000 |8 70.0 0.36 10.24

More heads
— worse
results.

Selected models trained for translation from English to Czech. InferSent and GloVe-
BOW are trained on monolingual (English) data.




Full Results —
correlations

BLEU vs. other metrics:
-0.57 £ 0.31 (en—cs)
—-0.36 £ 0.29 (en—de)

Pairwise average
(except BLEU):

0.78 £ 0.32 (en—cs)
0.57 £ 0.23 (en—de)

—-1.00 —-0.75 —0.50 —0.25 0.00

0.25

0.50

0.75

1.00



Full Results —
correlations
excluding
Transformer

BLEU vs. other metrics:
-0.57 £ 0.31 (en—cs)
—-0.54 + 0.27 (en—de)

Pairwise average
(except BLEU):

0.78 £ 0.32 (en—cs)
0.62 + 0.23 (en—de)

—1.00 -0.75 —0.50 —0.25 0.00

0.25

0.50

0.75

1.00



Compound

attention
interpretation

ATTN-ATTN en-cs
model with 8 heads



Compound
attention
interpretation
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inner attention
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Summary
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attention and one $&!#* vector representing the whole
sentence.
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Summary

e Proposed NMT architecture combining the benefit of
attention and one $&!#* vector representing the whole
sentence.

e Evaluated the obtained sentence embeddings using a
wide range of “semantic” tasks.

® The better the translation, the worse performance in
“meaning” representation.

e Heads divide sentence equidistantly, not logically.



Summary

e Proposed NMT architecture combining the benefit of
attention and one $&!#* vector representing the whole
sentence.

e Evaluated the obtained sentence embeddings using a
wide range of “semantic” tasks.

o T r the translation, the erformance in

° Join our
JNLE Special Issue on Sentence Representations:

http://ufal.mff.cuni.cz/jnle-on-sentence-representation

/\/—\/




InferSent multi-task training (in OC’s thesis only)

e |dea: produce better representations by jointly training
NMT with other tasks
e Proxy: predict InferSent embeddings as the auxiliary task

NMT e NMT | Lur_ target
>o— > L T2 o
encoder «° . decoder sentence
source W.,b

sentence

L = L:MT -+ CYL:MSE

CMSE o ° o

InferSent 2o o
———

encoder o o UlnferSent



http://hdl.handle.net/20.500.11956/99393

Multi-task training results en—cs

BLEU

cs-ATTN-ATTN (size 1000, 1 head)

- T O
5 10 15
cs-ATTN-ATTN (size 1000, 4 heads)
r N
T T L\l N
G 10 15
cs-ATTN-ATTN (size 1000, 8 heads)
T T T O'
5 10 15
cs-ATTN-ATTN (size 4000, 4 heads)
T T T O_
61 10 15
cs-MAXPOOL (size 1000)
O T -
5 10 15

AvgAcc

cs-ATTN-ATTN (size 1000, 1 head)

T T T T o_
70 71 72 73
cs-ATTN-ATTN (size 1000, 4 heads)
P
T T T T
70 71 72 73
cs-ATTN-ATTN (size 1000, 8 heads)
‘C T T T
70 71 72 73
cs-ATTN-ATTN (size 4000, 4 heads)
Y
T ™ T Y
70 71 72 73
cs-MAXPOOL (size 1000)
T T T C
70 71 72 73

O Baseline



Multi-task training results en—cs

cs-ATTN-ATTN (size 1000, 1 head) cs-ATTN-ATTN (size 1000, 1 head)
L) L} v L) T T L] ov
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cs-ATTN-ATTN (size 1000, 4 heads) cs-ATTN-ATTN (size 1000, 4 heads)
T T T 9_ T l‘;,l' T T
) 10 15 ) 70 71 72 73
a cs-ATTN-ATTN (size 1000, 8 heads) é[) cs-ATTN-ATTN (size 1000, 8 heads)
- T T T a' (=) ‘G’ T T T
m 5 10 15 Z T 1 T2 73
cs-ATTN-ATTN (size 4000, 4 heads) cs-ATTN-ATTN (size 4000, 4 heads)
T T T 9_ T I‘D T T
) 10 15 70 71 72 73
cs-MAXPOOL (size 1000) cs-MAXPOOL (size 1000)
C ‘;" ' T T T ‘D
5 10 15 70 71 72 73

< Multitask Inactive, a=0

O Baseline



Multi-task training results en—cs

cs-ATTN-ATTN (size 1000, 1 head) cs-ATTN-ATTN (size 1000, 1 head) o
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Multi-task training results en—de
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Multi-task training results en—de
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— en-de results less stable (much smaller vocabulary).



Multi-task training results en—de
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Multi-task training results en—de
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