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1. Introduction
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The definition of metaphor.

Linguistically, metaphor is defined as a language
expression that uses one or several words to represent
another concept, rather than taking their literal
meanings of the given words in the context (Lagerwerf

and Meijers, 2008).
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Metaphors are widespread in natural language.

One third of sentences in typical
corpora contain metaphors.

Metaphors

Literals

(Cameron, 2003; Martin, 2006; Steen et al., 2010; Shutova 2016)
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Contexts help to find anomalies and identify metaphors.

She devoured his sandwiches.

She devoured his novels.
v

}Anomalies Common sense

A 4

“devoured” means “enjoyed avidly”. Interpretation

v

“devoured” and “enij ” are different concepts PR
Iif:racill:/ ed” and “enjoyed” are P |dentification

“devoured” is metaphorical.
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* Many previous metaphor processing methods are
domain dependent

* Many works simply use input vectors

* Metaphor processing has rarely been applied to a
real-world NLP task, instead mostly reporting
accuracy on metaphor identification or
Interpretation.
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Contribution.

: devoured
1. Metaphor detection and
interpretation in sentences from enjoyed

unrestricted domains.

2. Investigate the effectiveness of input O

and output vectors of word \‘/’

embedding.

3. Apply metaphor detection and ai’ Google
interpretation to improve Machine fransiate

Translation. blng
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1. Metaphor detection and interpretation in whole

sentence from unrestricted domains.

She devoured his novels.

"~ enjoyed Interpretation

~ metaphorical |dentification
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1. Metaphor detection and interpretation in whole

sentence from unrestricted domains.

Sentence level

This young man knows how
to climb the social ladder.

l

Metaphorical

Parsing »

Phrase level

climb ladder

|

Literal
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2. Investigate the effectiveness of input and output

vectors of word embedding.

Output vector Input vector of
of enjoyed enjoyed

.\‘/'

Input vector of
novels
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3. Apply metaphor detection and interpretation to

improve Machine Translation.

Without metaphor processing

4

With metaphor processing

Google Google| G
Translate Tr-a ns | a te Translate Tun off instal
Chinese English Spanish English - detected ~ s Chinese (Simpiified) English Spanish - I Chinese English Spanish |English - detected - #4  Chinese (Simplified) English Spanish ~
1 1 X s,
She devoured his novels. * BT A0\, She enjoyed his novels. S EIRADEY NS
Bad . oo Good
Ta tunshile ta de xidoshud Taxihudnta de xidoshud N
Ll
Microsoft b B¥ Microsoft
r

She devoured his novels.

iIRERIE S\,

sor melng

Engien deacted)

She enjoyed his novels.
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2. Methodology
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One of novelties of our work is to model co-occurrence

between words with input and output vectors.

CBOW word2vec Input Hidden Output
(Mikolov et al, 2013)
Cy
Context words c, T Target words

C

m

. .l llll Output vector
. ll llll Abandoned
llll llll (e.g., gensim word2vec
. .l l.ll (Rehurek and Sojka, 2010))

Input vec Output vec POSITIVE
NEGATIVE

Input vector
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The interaction between input and output vectors

represents the co-occurrence of words and contexts.

Input vec Output vec

- Nl BERE
y <~ HE EEHE

drink apple juice

chellll 10NN

| N NN EEEN

500 iterations on wevi
https://ronxin.github.io/wevi/

Training corpus
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The interaction between input and output vectors

represents the co-occurrence of words and contexts.

Input vec Output vec
apple . ll apple input vec
drink ®
close
juice O

orange input vec
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The interaction between input and output vectors

represents the co-occurrence of words and contexts.

Input vec Output vec

o |

apple input vec

distant
juice
orange

drink input vec
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The interaction between input and output vectors

represents the co-occurrence of words and contexts.

Input vec Output vec apple

e [ ll o o
drink .... drink
distant

output vec

input vec

juice

O
drink
input vec

orange
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Summary.

* Input vectors can better model the similarity between
words with similar semantics and syntax;

» Output vector can better model the co-occurrence
between words with different Part-of-Speech
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The co-occurrence between a target word and its

context is measured by

_ 0 .1
SCOT€cooccur = COS(VT' vcontext)

m

[ 1 l
Vcontext — E Uen
n=1
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Hypotheses.

H1. Literal sense is more common that metaphorical.
Detect the

(Cameron, 2003; Martin, 2006; Steen et al., 2010; Shutova =

2016)

One third of sentences in typical corpora contain metaphors.

‘Metaphors
Literals

H2. A metaphorical word can be identified, if the sense the :
|dentify a

word takes within its context and its literal sense come from

different domains. (Wilks, 1975, 1978)

metaphor
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Framework.

w; O. 2O Wy

. train W2 OSSO0 We

1 Wiki p| W3o— LRYOEAHO W3
Word Embedding S NI

Wno 4o W

‘ A sentence: {Wgq, Wep, Wy Weg ...} ’

‘/ T e e — m — m m e e e e e e
( \

Context words: || Target word:| Look u Synonyms: {s4, S, ...}
{Wey, Wepy Weg oo} | {wy} WordNet | Hypernyms: {hy, h, ...} |

Candidate word set W/

2O Wy (cos(w,, context))
O30 S1| cos( s;, context)
3_ : ,O 90 S2 | argmax{Cos(sz, context)\ o w*ew
S e j
‘oi h; ! cos( h;, context) | Best fit word
R Y, - J
literal, if S > threshold
4 . S = cos(w*, wy)
metaphoric, otherwise
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Step 1: training word embedding models on Wikipedia, so

that we can model the common expressions.

w; O O Wy
Train Wy O ..O_':: O W,
Wikipedia > wy O A0 0O Wy
Word Embedding L E KA
. 1O S
J w, O ‘O w,
N J

* Wikipedia’s language could be more literal.

 We model the literal so that we can identify the anomalies
in metaphor in next steps. (H1)
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Step 2: look up WordNet to list all possible senses of a

target word.

‘ A sentence: {w_;, W, W, W5 ...} |

P — |
Context words: Target word: | Lookup | Synonyms:{s,, s, ...} |
{W., W, Wes ...} {w,} WordNet | Hypernyms: {h;, h, ...}

Candidate word set W

* Separate context words and a target word.

* A candidate word set consists of hypernyms and synonyms
of the target word, which represents all possible senses of
the target word.
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Step 3: identify the most likely sense from the candidate

set.

Candidate word set W

Context words:
{Wc1' Wear Wes }

Synonyms: {s;, S, ...}
Hypernyms: {h,, h, ...}

4 AL I 2
w,, © O Wi " cos( w,, context)
W, O = 10 20 31 cos( s, , context)
W3 O- < %0 <~ 40 %2 | argmax{ cos(s,,context) | » w*€EW
0o .
W, |~ - cos( h;, context) Best fit word
cm O O L J J
D )

 Compute the most likely word appearing in the context.

* The best fit word is interpreted as the sense that metaphor
takes. (H1)
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Step 4: identify the metaphoricity of a target word.

literal, if S > threshold

S =cos(w*, w,) , ,
metaphoric, otherwise

A metaphor could be identified as the real sense and its
literal sense come from different domains. (H2)
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An example in Step 2.

She devoured his novels.

Context words: {She, his, novels}

Target word: {devoured}

Candidate word set:{
{devour, devoured, devours, devouring}

WordNet Sense 1: {destroy, ruin, ...}
Sense 2: {enjoy, bask, ...}
(Fellbaum, 1998)  Sense 3: {demolish, down, ..., eat up, finish}

} HYPERNYMS
SYNONYMS
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An example in Step 3.

vcontext — m z vcn — (vShe + vhlS + vnovels)
e 0 [ _ N
Cos(vdevoured» vcontext) = —0.01

0] L —
Cos(vdestroyed' 1Jcontext) = —0.04
arg max
5 < Cos(vrumed»vcontext) = —0.01 >
L

Cos(ven]oyed' vcontext) = 0.02
\eeeees Y,

Best fit word = enjoyed
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An example in Step 4.

{Iiteral, if S > threshold

_ [ i
5= Cos(venjoy' vdevour) : :
metaphoric, otherwise

Best fit word Target word

S$=-0.04 <threshold =0.6

Metaphoric
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Different setups in Step 3.

(1) SIM-CBOW, = Cos(vlic,cbow' véontext,cbow)
(2) SIM-CBOW,4+¢ = Cos(vl(c),cbow' véontext,cbow)
(3) SIM-SG; = cos(v,i,sg,véontext,sg)

(4) SIM-SGy0 = Cos(vlg,sg»véontext,sg
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Examine on Machine Translation (before paraphrasing).

Google i 0 @

Translate Turn off instant translation o

Chinese Eng English - di d ~ #3  Chinese (Simplified) English Spanish ~ m

She devoured his novels. X AN T b a9\,

<) . 5000 WD O < 4

Ta tinshile ta de xidoshud

B® Microsoft b 0

Translator Text  Conv n Apps For business elp

English (detocted) : Chinese Simplified ¢ English

She devoured his novels. IRE RIS /iR,

24/5000

t 1dng t0n hd yan de 356 xido shud.

She (physically) swallowed his novels.

She voraciously wrote novels.
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Examine on Machine Translation (after paraphrasing).

Google

5 0@
Chinese Eng - . % Chinese (Simpitied) Engisn spanisn - [l . )
She enjoyed his novels. BRI\, } * She enjoyed his novels.
O . ays00  H 0O < ’ ‘
Ta xihuan ta de xidoshus

B Microsoft

Translator  Text  Conversat

Chirese Smpiitied :  Englsh

She enjoyed his novels. bt E IR HD/ VISR ' }

* She enjoyed his novels.

18 xJ huan 1 de xido shud,
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3. Experiments and Results
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Experiment setup.

Metaphor identification:
* Sentence level: inputs are original sentences

* Phrase level: inputs are parsed phrases

Metaphor interpretation:

e Machine Translation



Dataset and baselines.

* 1,230 literals

Mohammad et al. (2016)
10 annotators

409 metaphors

Mao et al. (2018)

Sentence Phrase
evaluation evaluation
212 meta. * 316 meta.

Shutova et al. (2016),
Rei et al. (2017)
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Phrase evaluation baselines:

* Shutova et al. (2016) used Skip-gram input vectors
to model the similarity between two component
words.

* Reietal.(2017) used sigmoid function, projecting
Skip-gram input vectors into another space, then
training a deep neural network based classifier.

Sentence evaluation baseline:

* Melamud et al. (2016) used LSTM trained context
embeddings to predict the center word.



Metaphor identification results.
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Method P R F1

Shutova et al. (2016) 0.67 0.76  0.71

Phrase Rei et al. (2017) 0.74 0.76 0.74
SIM-CBOW 74+ 0 066 0.78 0.72
SIM-SGr+0 0.68 0.82 0.74%

Melamud et al. (2016) 0.60 0.80  0.69

SIM-SGy 056 095 0.70

Sent. SIM-SGr+0 062 089 0.73
SIM-CBOW 0.59 0.91 0.72
SIM-CBOW7+0 0.66 088 0.75%

Table 1: Metaphor identification results. NB: * denotes that
our model outperforms the baseline significantly, based on
two-tailed paired t-test with p < 0.001.
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Evaluation with different thresholds.

~ Sentence Phrase
P R F1 FlSIM-CBOWI+O FlSlM-SGI+O

03 | 0.75 0.60 0.67 0.56 0.46
04 | 0,69 0.75 0.72 0.65 0.63
05 | 0.67 082 0.74 0.71 0.72
0.6 | 0.66 088 0.75 0.72 0.74
0.7 | 064 088 0.74 0.72 0.73
0.8 | 0.63 0.89 0.74 0.72 0.73
09 | 0.63 0.89 0.74 0.71 0.73
1.0 | 0.50 1.00 0.67 0.65 0.65

Table 2: Model performance vs. different threshold (7)
settings. NB: the sentence level results are based on
SIM-CBOW 7. 0.
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Experiment design for Machine Translation evaluation.

Sample Questionnaire

The ex-boxer's job is to bounce people who want to enter this
private club.
bounce: eject from the premises Good / Bad

L A% a0 TR R RO AR B A AN B , O[O

2. A% T TR AR S A AN FUBLR 0 A BB, 1 [

3. B o T LA RIEMRIEAR S AN R IR A, L [

4. BT T T AR HE AR AR A ANEL B EBRI A L O

5. Bl o T A9 TARRAT AR S A X MR RLR S, O

6. % T TAERAT dR IR AX ML RLER BRI, 1 [

1. Google translation on the original sentence.

2. Bing Translation on the original sentence.

3. Google translation on our model paraphrased sentence.
4. Bing Translation on our model paraphrased sentence.

5. Google translation on Context2Vec paraphrased sentence.
6. Bing Translation on Context2Vec paraphrased sentence.
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Metaphor interpretation results.

X Original sentence
L1 Paraphrased by our model

S /\ Paraphrased by the baseline (Melamud et al. 2016)
=

0.7 X
= @ =

0.6 -0 - £+0.091
= +0.11 _ X
o X +0.24
= 0.5 1A
= +0.26
'g‘ 0.4 - X

- X
E 0.3
Literal Metaphoric Overall Literal Metaphoric Overall

Google Bing
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4. Conclusion
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IELGENENZ

* A novel model for metaphor identification and
interpretation on sentence level.

* A metaphor could be identified by its interpretation.

* Input and output vectors could better model the
co-occurrence between two words.

* Effective paraphrasing of metaphors could improve
Machine Translation.
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