Domain Adaptation with Adversarial Training and Graph Embeddings

Firoj Alam @firojalam04

Shafiq Joty†

Muhammad Imran @mimran15

Qatar Computing Research Institute (QCRI), HBKU, Qatar School of Computer Science and Engineering[†] Nanyang Technological University (NTU), Singapore[†]

Time Critical Events

Artificial Intelligence for Digital Response (AIDR)

Response time-line today

Response time-line our target

جامعة حمد بن خليفة HAMAD BIN KHALIFA UNIVERSITY

Artificial Intelligence for Digital Response

Artificial Intelligence for Digital Response

Expert/User/Crisis Manager

See. See

Artificial Intelligence for Digital Response

- Small amount of labeled data and large amount of unlabeled data at the beginning of the event
- Labeled data from the past event. Can we use them? What about domain shift?

California Widdhes Treates Significant Losses for PCC Insures, Moodys

Hacilitates decision makers

Our Solutions/Contributions

 How to use large amount of unlabeled data and small amount of labeled data from the same event?

 \Rightarrow Graph-based semi-supervised

Our Solutions/Contributions

 How to use large amount of unlabeled data and small amount of labeled data from the same event?

 \Rightarrow Graph-based semi-supervised

- How to transfer knowledge from the past events
 - => Adversarial domain adaptions

Domain Adaptation with Adversarial Training and Graph Embeddings

Supervised Learning

Semi-Supervised Learning

Semi-Supervised component

Semi-Supervised Learning

- L: number of labeled instances (x_{1:L}, y_{1:L})
- **U**: number of unlabeled instances (**x**_{L+1:L+U})
- Design a classifier $f: x \rightarrow y$

Assumption: If two instances are similar according to the graph, then class labels should be similar

Two Steps:

- Graph Construction
- Classification

Graph Representation

- Nodes: Instances (labeled and unlabeled)
- Edges: n x n similarity matrix
- Each entry *a_{i,j}* indicates a similarity between instance *i* and *j*

Graph Construction

- We construct the graph using k-nearest neighbor (k=10)
 - Euclidian distance
 - Requires n(n-1)/2 distance computation
 - *K-d tree data structure to reduce the computational complexity O(logN)*
 - Feature Vector: taking the averaging of the word2vec vectors

QCRI معمد قطر لبحوث الحوسبة Qatar Computing Research Institute جامعة حمد بن خليف AMAD BIN KHALIFA UNIVERSITY

Semi-Supervised component: Loss function

 $\mathcal{L}(\Lambda, \Phi, \Omega) = \mathcal{L}_C(\Lambda, \Phi) + \lambda_g \mathcal{L}_G(\Lambda, \Omega)$

Graph context loss

 $\mathcal{L}_G(\Lambda, \Omega) = -\frac{1}{L_s + U_s} \sum_{i=1}^{L_s + U_s} \mathbb{E}_{(j,\gamma)} \log \sigma \left(\gamma C_j^T \mathbf{z}_g(i)\right)$ (Yang et al., 2016)

Learns the internal representations (**embedding**) by predicting a node in the graph context

Semi-Supervised component: Loss function

$$\mathcal{L}_G(\Lambda, \Omega) = -\frac{1}{L_s + U_s} \sum_{i=1}^{L_s + U_s} \mathbb{E}_{(j,\gamma)} \log \sigma \left(\gamma C_j^T \mathbf{z}_g(i)\right)$$
(Yang et al., 2016)

Two types of context

1. Context is based on the graph to encode structural (distributional) information

• Semi-Supervised component: Loss function

$$\mathcal{L}_G(\Lambda, \Omega) = -\frac{1}{L_s + U_s} \sum_{i=1}^{L_s + U_s} \mathbb{E}_{(j,\gamma)} \log \sigma \left(\gamma C_j^T \mathbf{z}_g(i)\right)$$
(Yang et al., 2016)

Two types of context

- 1. Context is based on the graph to encode structural (distributional) information
- 2. Context is based on the labels to inject label information into the embeddings

Semi-Supervised component: Loss function

 $\mathcal{L}(\Lambda, \Phi, \Omega) = \mathcal{L}_C(\Lambda, \Phi) + \lambda_g \mathcal{L}_G(\Lambda, \Omega)$

 $\Lambda = \{U, V\}$ Convolution filters and dense layer parameters $\Phi = \{V_c, W\}$ Parameters specific to the supervised part $\Omega = \{V_g, C\}$ Parameters specific to the semi-supervised part

Domain Adaptation with Adversarial Training and Graph Embeddings

Domain Adaptation with Adversarial Training

Domain discriminator is defined by:

$$\hat{\delta} = p(d = 1 | \mathbf{t}, \Lambda, \Psi) = \operatorname{sigm}(\mathbf{w}_d^T \mathbf{z}_d)$$

Negative log probability of the discriminator loss:

$$\mathcal{J}_i(\Lambda, \Psi) = -d_i \log \hat{\delta} - (1 - d_i) \log \left(1 - \hat{\delta}\right)$$

Domain adversary loss is defined by:

$$\mathcal{L}_D(\Lambda, \Psi) = -\frac{1}{L_s + U_s} \sum_{i=1}^{L_s + U_s} \mathcal{J}_i(\Lambda, \Psi) - \frac{1}{U_t} \sum_{i=1}^{U_t} \mathcal{J}_i(\Lambda, \Psi)$$

 $d \in \{0,1\}$ represents the domain of the input tweet t

 $\Lambda = \{U, V\}$ Convolution filters and dense layer parameters $\Psi = \{V_d, w_d\}$ Parameters specific to the domain discriminator part

Domain Adaptation with Adversarial Training and Graph Embeddings

Combined loss

Supervised $\mathcal{L}(\Lambda, \Phi, \Omega, \Psi) = \mathcal{L}_C(\Lambda, \Phi) + \lambda_g \mathcal{L}_G(\Lambda, \Omega) + \lambda_d \mathcal{L}_D(\Lambda, \Psi)$ Semi-Supervised

We seek parameters that minimizes the classification loss of the class labels and maximizes domain discriminator loss

$$\theta^* = \operatorname*{argmin}_{\Lambda, \Phi, \Omega} \max_{\Psi} \mathcal{L}(\Lambda, \Phi, \Omega, \Psi)$$

- $\Lambda = \{U, V\}$ Convolution filters and dense layer parameters
- $\Phi = \{V_c, W\}$ Parameters specific to the supervised part
- $\Omega = \{V_g, C\}$ Parameters specific to the semi-supervised part
- $\Psi = \{V_d, w_d\}$ Parameters specific to the domain discriminator part

Domain

Model Training

Algorithm 1: Model Training with SGD

Input : data \mathcal{D}_{S}^{l} , \mathcal{D}_{S}^{u} , \mathcal{D}_{T}^{u} ; graph G **Output**: learned parameters $\theta = {\Lambda, \Phi}$ Initialize model parameters {E, Λ, Φ, Ω, Ψ}; 2. repeat // Semi-supervised for each batch sampled from $p(j, \gamma | i, \mathcal{D}_S^l, \mathcal{D}_S^u, G)$ do a) Compute loss $\mathcal{L}_G(\Lambda, \Omega)$ b) Take a gradient step for $\mathcal{L}_G(\Lambda, \Omega)$; end // Supervised & domain adversary for each batch sampled from \mathcal{D}_{S}^{l} do a) Compute $\mathcal{L}_C(\Lambda, \Phi)$ and $\tilde{\mathcal{L}}_D(\Lambda, \Psi)$ b) Take gradient steps for $\mathcal{L}_C(\Lambda, \Phi)$ and $\mathcal{L}_D(\Lambda, \Psi);$ end // Domain adversary for each batch sampled from \mathcal{D}_T^u do a) Compute $\mathcal{L}_D(\Lambda, \Psi)$ b) Take a gradient step for $\mathcal{L}_D(\Lambda, \Psi)$; end

until convergence;

Corpus

- Collected during:
 - 2015 Nepal earthquake
 - 2013 Queensland flood
- A small part of the tweets has been annotated using crowdflower
 - Relevant: injured or dead people, infrastructure damage, urgent needs of affected people, donation requests
 - Irrelevant: otherwise

Dataset	Relevant	Irrelevant	Train (60%)	Dev (20%)	Test (20%)
Nepal earthquake	5,527	6,141	7,000	1,167	3,503
Queensland flood	5,414	4,619	6,019	1,003	3,011

Unlabeled Instances

Nepal earthquake: 50K Queensland flood: 21K

- Supervised baseline:
 - Model trained using Convolution Neural Network (CNN)
- Semi-Supervised baseline (Self-training):
 - Model trained using CNN were used to automatically label unlabeled data
 - Instances with classifier confidence >=0.75 were used to retrain a new model

Semi-Supervised baseline (Self-training)

Experiments	AUC	Р	R	F1
Nepal]	Earthqual	Ke		
Supervised	61.22	62.42	62.31	60.89
Semi-Supervised (Self-training)	61.15	61.53	61.53	61.26
Semi-Supervised (Graph-based)	64.81	64.58	64.63	65.11
Queen	sland Floo	d		
Supervised	80.14	80.08	80.16	80.16
Semi-Supervised (Self-training)	81.04	80.78	80.84	81.08
Semi-Supervised (Graph-based)	92.20	92.60	94.49	93.54

• Domain Adaptation Baseline (Transfer Baseline): Trained CNN model on source (an event) and tested on target (another event)

Source	Target	AUC	Р	R	F1
	In-Domai	n Superv	vised M	odel	
Nepal	Nepal	61.22	62.42	62.31	60.89
Queensland	Queensland	80.14	80.08	80.16	80.16
	Tra	nsfer Ba	seline		
Nepal	Queensland	58.99	59.62	60.03	59.10
Queensland	Nepal	54.86	56.00	56.21	53.63

Domain Adaptation

Source	Target	AUC	P	R	F1
	In-Dor	nain Supervi	sed Model		
Nepal	Nepal	61.22	62.42	62.31	60.89
Queensland	Queensland	80.14	80.08	80.16	80.16
	r	Fransfer Base	eline		
Nepal	Queensland	58.99	59.62	60.03	59.10
Queensland	Nepal	54.86	56.00	56.21	53.63
	D	omain Adver	sarial	•	
Nepal	Queensland	60.15	60.62	60.71	60.94
Queensland	Nepal	57.63	58.05	58.05	57.79

Combining all the components of the network

Source	Target	AUC	P	R	F1		
	In-I	<u> Domain Super</u>	vised Model				
Nepal	Nepal	61.22	62.42	62.31	60.89		
Queensland	Queensland	80.14	80.08	80.16	80.16		
		Transfer Ba	seline				
Nepal	Queensland	58.99	59.62	60.03	59.10		
Queensland	Nepal	54.86	56.00	56.21	53.63		
		Domain Adve	ersarial				
Nepal	Queensland	60.15	60.62	60.71	60.94		
Queensland	Nepal	57.63	58.05	58.05	57.79		
Domain Adversarial with Graph Embedding							
Nepal	Queensland	66.49	67.48	65.90	65.92		
Queensland	Nepal	58.81	58.63	59	59.05		

Summary

- We have seen how graph-embedding based semi-supervised approach can be useful for small labeled data scenario
- How can we use existing data and apply domain adaptation technique
- We propose how both techniques can be combined

Limitation and Future Study

Limitations:

- Graph embedding is computationally expensive
- Graph constructed using averaged vector from word2vec
- Explored binary class problem

Future Study

- Convoluted feature for graph construction
- Hyper-parameter tuning
- Domain adaptation: labeled and unlabeled data from target

Thank you!

To get the data: http://crisisnlp.qcri.org/

Please follow us @aidr_qcri

Firoj Alam, Shafiq Joty, Muhammad Imran. *Domain Adaptation with Adversarial Training and Graph Embeddings*. ACL, 2018, Melbourne, Australia.

