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Motivation
• What action causes this?
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Motivation
• What is the result state of “open box”?
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Understanding Cause-Effect
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Naïve Physical Action-Effect Prediction
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Action
(squeeze-bottle)

Action to Effect ? ?

? ?



Naïve Physical Action-Effect Prediction
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Naïve Physical Action-Effect Prediction
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Effect to Action

Action
(peel-carrot)
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Naïve Physical Action-Effect Prediction
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Related Work
• The NLP community 
– Most existing studies focus on the causal relations between high-level events. 

E.g., “the collapse of the housing bubble” causes the effect of “stock prices to 
fall”. (Yang and Mao, 2014; Sharp et al., 2016)

– This paper studies the basic cause-effect knowledge related to concrete actions 
and their effects to the world.

• Recent advances in Computer Vision and Robotics
– Object physical state prediction (Zhou and Berg, 2016; Wu et al., 2017)

– Action recognition through detection of state changes (Yang et al., 2013)

– Robot following natural language commands (She et al, 2014; Misra et al., 2015)
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This Work
• Introduce a new task on physical action-effect prediction and create a 

dataset for this task.
– Data collection and analysis

• Propose an approach that harnesses the large amount of image data 
available on the web with minimum supervision.
– Web images acquisition
– Bootstrapping strategy

• Automatic prediction of effect knowledge for novel actions.
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Action-Effect Data
• Actions (Verb-Noun Pairs)
– 140 verb-noun pairs 
– 62 unique verbs (e.g., bend, boil, chop, crack, fold, grind, ignite, kick, peel, soak, 

trim)
– 39 unique nouns (e.g., apple, baseball, book, car, chair, cup, flower, orange, shoe)

• Effects
– Effects described in language
– Effects depicted by images
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Effects Described in Language
• Action effect is often presupposed in our communication and not 

explicitly stated.

• Crowd-sourcing data collection
– Workers were shown a verb-noun pair, and were asked to describe what changes 

might occur to the object as a result of the action.

– 1400 effect descriptions (10 for each verb-noun pair)
– Examples:
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Effects Depicted by Images
• Human labeled image set: 4163 images
– Positive images are those capturing the resulting world state of the action. 
– Negative images are those deemed to capture some state of the related nouns, 

but are not the resulting state of the corresponding action.

Positive:

Negative:

Action: Fry-Egg
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(Data available on the project webpage.)



Web Search Images
• Searching keywords: phrases extracted from language effect descriptions
– Phrases were extracted using syntactic patterns:

book� book	is	on	fire� book	is	set	aflame�

BAD
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Bootstrapping Approach
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(Reed et al., 2014)



Evaluations
• Human annotated image data: use 10% as seeding images (training), 30% for 

development and 60% for test. 
– On average, each verb-noun pair only has 3 seeding images

• Web search images: over 60,000 images were downloaded using around 2,000 
effect phrases as searching keywords.

• Methods for comparison
– Seed 
– Seed+Act+Eff
– BS+Seed+Act+Eff
BS: bootstrapping approach;  Seed: seed images; 
Act: web images downloaded using verb-noun as keywords;
Eff: web images downloaded using effect phrases as keywords.
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Examples
Top Action
Predictions

Top Action
Predictions

bite apple
background
cut apple
peel apple

fry egg
background
crack egg
mix eggs

background
chop carrot
grate carrot
peel carrot

background
insert key
close drawer
fasten door

background
cut potato
fry potato
mash potato

pile books
background
wrap book
roll paper
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Examples
Top Action
Predictions

Top Effect
Predictions

Top Action
Predictions

Top Effect
Predictions

bite apple
background
cut apple
peel apple

apple is eaten
apple is being cut
apple is chewed
apple in tiny pieces

fry egg
background
crack egg
mix eggs

egg into a harder 
substance
cup into smaller pieces
egg edible

background
chop carrot
grate carrot
peel carrot

carrot into tiny pieces
carrot is being cut
carrot into many smaller 
pieces

background
insert key
close drawer
fasten door

key in the keyhole
drawer without a key
door is locked
door is being bolted

background
cut potato
fry potato
mash potato

potato into a pot
potato is being sliced
potato for
potato edible

pile books
background
wrap book
roll paper

books in a stack
book on
books in a large stack
books in a pile



Examples
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Action AP
beat eggs 0.783
pile boxes 0.766
bite apple 0.484
slice onion 0.470

apple bite apple

eggs beat eggs



Examples

21

Action AP
beat eggs 0.783
pile boxes 0.766
bite apple 0.484
slice onion 0.470

apple bite apple

eggs beat eggs

shirt stain shirt

window close window

Action AP
crack glass 0.047
lock drawer 0.037
stain shirt 0.023
close window 0.087



Handling Unseen Verb-Noun Pairs
• Generalize effect knowledge to new verb-noun pairs through 

an embedding model.
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Action-Effect Embedding trained from seed knowledge 



Handling Unseen Verb-Noun Pairs
• Generalize effect knowledge to new verb-noun pairs through 

an embedding model.
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Action-Effect Embedding trained from seed knowledge 

A New Action
(ignite-paper)

Effect phrases
paper is being charred,
paper is being burned,
paper is set,
paper is being destroyed,
paper is lit
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pEff: web images downloaded using the predicted effect phrases.
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Action-Effect Embedding Space
GloVe Verb GloVe Verb + Noun Action-Effect
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Action-Effect Embedding Space

bind
coil

bend

twist
knot

bind
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knot
bend

GloVe Verb GloVe Verb + Noun Action-Effect
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Action-Effect Embedding Space

bind
coil

bend
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knot

bind
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knot
bend

GloVe Verb GloVe Verb + Noun Action-Effect

grind

grate grind grate

grate
grind
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Action-Effect Embedding Space

bind
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GloVe Verb GloVe Verb + Noun Action-Effect
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Action-Effect Embedding Space
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GloVe Verb GloVe Verb + Noun Action-Effect
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Action-Effect Embedding Space
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Learning from a few examples
Goal: learn from a few examples to make it possible for humans to teach agents for 
tasks at hand.
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Action-Effect Prediction in Interactive Task Learning 
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Action-Effect Prediction in Interactive Task Learning 
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Summary
• Presented an initial investigation on action-effect prediction.

• Explored method using web image data to facilitate the training of 
action-effect prediction models.

• Explored using semantic embedding space to extend effect knowledge 
to new verb-noun pairs.

• Future Directions
– Develop better models to improve task performance
– Extend action-effect prediction to video data
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Thank you !


