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Background: 
Unsupervised MT

‣ Key component: 
Initialization via 
unsupervised cross-lingual 
alignment of word 
embedding spaces
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‣ Cross-lingual word embeddings enable cross-lingual 
transfer

‣ Most common approach: Project one word embedding 
space into another by learning a transformation matrix  
between   source embeddings    and their translations

 (Mikolov et al., 2013)

‣ More recently: Use an adversarial setup to learn an 
unsupervised mapping

‣ Assumption: Word embedding spaces are approximately 
isomorphic, i.e. same number of vertices, connected the 
same way.
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How similar are embeddings 
across languages?

English German

‣ Not isomorphic

Word embeddings are not approximately isomorphic across 
languages.
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‣ Quantifies how much two NN graphs are isospectral, i.e. 
they have the same spectrum (same sets of eigenvalues).

‣ Isomorphic     isospectral, but isospectral     isomorphic

‣                             

‣           :            are isospectral (very similar)

‣             :            become less similar

→ ↛

Δ : G1, G2 → [0,∞)

Δ = 0 G1, G2

Δ → ∞ G1, G2
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Unsupervised cross-lingual 
learning assumptions

Conneau et al. (2018) This work

Languages
Dependent-marking, 
fusional and isolating

Agglutinative, many cases

Corpora Comparable (Wikipedia) Different domains

Algorithms/
hyperparameters

Same Different
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3. Refinement (Procrustes analysis): 
Build bilingual dictionary of frequent words using    . Learn 
a new     based on frequent word pairs.

4. Cross-domain similarity local scaling (CSLS):  
Use similarity measure that increases similarity of isolated 
word vectors, decreases similarity of vectors in dense areas.
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A simple weakly supervised method



‣ Extract identically spelled words in both languages

‣ Use these as bilingual seed words

‣ Run refinement step of Conneau et al. (2018)

 11

A simple weakly supervised method
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Experiments: 
Bilingual dictionary induction

‣ Given a list of source language words, find the closest 
target language word in the cross-lingual embedding space

‣ Compare against a gold standard dictionary

‣ Metric: Precision at 1 (P@1)

‣ Use fastText monolingual embeddings

Conneau et al. (2018) This work

Languages 
(English to)

French, German, 
Chinese, Russian, 

Spanish

Estonian (ET), Finnish (FI), 
Greek (EL), Hungarian 

(HU), Polish (PL), Turkish 
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Impact of language similarity

‣ Eigenvector similarity strongly correlates with BDI 
performance   
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‣ Domain differences may exacerbate difficulties of 
generalising across dissimilar languages
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‣ Weak supervision helps to bridge domain differences, but 
performance still deteriorates
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Impact of evaluation procedure

‣ Part-of-speech:  
Performance on verbs is lowest across the board.

‣ Frequency: 
Sensitivity to frequency for Hungarian, but less so for 
Spanish.

‣ Homographs: 
Lower precision due to loan words/proper names. High 
precision for free with weak supervision.



 22

Takeaways



‣ Word embedding spaces are not approximately 
isomorphic across languages.

 22

Takeaways



‣ Word embedding spaces are not approximately 
isomorphic across languages.

‣ We can use eigenvector similarity to characterise the 
relatedness of two monolingual vector spaces.

 22

Takeaways



‣ Word embedding spaces are not approximately 
isomorphic across languages.

‣ We can use eigenvector similarity to characterise the 
relatedness of two monolingual vector spaces.

‣ Eigenvector similarity strongly correlates with 
unsupervised bilingual dictionary induction performance.

 22

Takeaways



‣ Word embedding spaces are not approximately 
isomorphic across languages.

‣ We can use eigenvector similarity to characterise the 
relatedness of two monolingual vector spaces.

‣ Eigenvector similarity strongly correlates with 
unsupervised bilingual dictionary induction performance.

‣ Limitations of unsupervised bilingual dictionary induction:

 22

Takeaways



‣ Word embedding spaces are not approximately 
isomorphic across languages.

‣ We can use eigenvector similarity to characterise the 
relatedness of two monolingual vector spaces.

‣ Eigenvector similarity strongly correlates with 
unsupervised bilingual dictionary induction performance.

‣ Limitations of unsupervised bilingual dictionary induction:

‣ Morphologically rich languages.

 22

Takeaways



‣ Word embedding spaces are not approximately 
isomorphic across languages.

‣ We can use eigenvector similarity to characterise the 
relatedness of two monolingual vector spaces.

‣ Eigenvector similarity strongly correlates with 
unsupervised bilingual dictionary induction performance.

‣ Limitations of unsupervised bilingual dictionary induction:

‣ Morphologically rich languages.

‣ Corpora from different domains.

 22

Takeaways



‣ Word embedding spaces are not approximately 
isomorphic across languages.

‣ We can use eigenvector similarity to characterise the 
relatedness of two monolingual vector spaces.

‣ Eigenvector similarity strongly correlates with 
unsupervised bilingual dictionary induction performance.

‣ Limitations of unsupervised bilingual dictionary induction:

‣ Morphologically rich languages.

‣ Corpora from different domains.

‣ Different word embedding algorithms.
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