On the Limitations of Unsupervised Bilingual Dictionary Induction

AYLIE

• Recently: Unsupervised neural machine translation (Artetxe et al., ICLR 2018; Lample et al., ICLR 2018)

 Recently: Unsupervised neural machine translation (Artetxe et al., ICLR 2018; Lample et al., ICLR 2018)

• Recently: Unsupervised neural machine translation (Artetxe et al., ICLR 2018; Lample et al., ICLR 2018)

 Key component: Initialization via unsupervised cross-lingual alignment of word embedding spaces

Cross-lingual word embeddings enable cross-lingual transfer

- Cross-lingual word embeddings enable cross-lingual transfer
- Most common approach: Project one word embedding space into another by learning a transformation matrix W between *n* source embeddings x_i and their translations y_i

- Cross-lingual word embeddings enable cross-lingual transfer
- Most common approach: Project one word embedding space into another by learning a transformation matrix W between *n* source embeddings x_i and their translations y_i

$$\sum_{i=1}^{n} \|\mathbf{W}\mathbf{x}_{i} - \mathbf{y}_{i}\|^{2} \quad (\text{Mikolov et al., 2013})$$

- Cross-lingual word embeddings enable cross-lingual transfer
- Most common approach: Project one word embedding space into another by learning a transformation matrix W between *n* source embeddings x_i and their translations y_i

- Cross-lingual word embeddings enable cross-lingual transfer
- Most common approach: Project one word embedding space into another by learning a transformation matrix W between *n* source embeddings x_i and their translations y_i
- $\sum_{i=1}^{n} \|\mathbf{W}\mathbf{x}_{i} \mathbf{y}_{i}\|^{2}$ (Mikolov et al., 2013) • More recently: Use an adversarial setup to learn an
 - unsupervised mapping
- Assumption: Word embedding spaces are *approximately isomorphic*, i.e. same number of vertices, connected the same way.

 Nearest neighbour (NN) graphs of top 10 most frequent words in English and German are not isomorphic.

- Nearest neighbour (NN) graphs of top 10 most frequent words in English and German are not isomorphic.
- NN graphs of top 10 most frequent English words and their translations into German

- Nearest neighbour (NN) graphs of top 10 most frequent words in English and German are not isomorphic.
- NN graphs of top 10 most frequent English words and their translations into German

NN graphs of top 10 most frequent English *nouns* and their translations

NN graphs of top 10 most frequent English *nouns* and their translations

NN graphs of top 10 most frequent English *nouns* and their translations

Not isomorphic

Word embeddings are *not* approximately isomorphic across languages.

 Need a metric to measure how similar two NN graphs G₁ and G₂ of different languages are

- Need a metric to measure how similar two NN graphs G₁ and G₂ of different languages are
- Propose eigenvector similarity

- Need a metric to measure how similar two NN graphs G₁ and G₂ of different languages are
- Propose eigenvector similarity
- A_1, A_2 : adjacency matrices of G_1, G_2

- Need a metric to measure how similar two NN graphs G₁ and G₂ of different languages are
- Propose eigenvector similarity
- A_1, A_2 : adjacency matrices of G_1, G_2
- D_1, D_2 : degree matrices of G_1, G_2

- Need a metric to measure how similar two NN graphs G₁ and G₂ of different languages are
- Propose eigenvector similarity
- A_1, A_2 : adjacency matrices of G_1, G_2
- D_1, D_2 : degree matrices of G_1, G_2
- $L_1 = D_1 A_1, L_2 = D_2 A_2$: Laplacians of G_1, G_2

- Need a metric to measure how similar two NN graphs G₁ and G₂ of different languages are
- Propose eigenvector similarity
- A_1, A_2 : adjacency matrices of G_1, G_2
- D_1, D_2 : degree matrices of G_1, G_2
- $L_1 = D_1 A_1, L_2 = D_2 A_2$: Laplacians of G_1, G_2
- λ_1, λ_2 : eigenvalues (spectra) of L_1, L_2

- Need a metric to measure how similar two NN graphs G₁ and G₂ of different languages are
- Propose eigenvector similarity
- A_1, A_2 : adjacency matrices of G_1, G_2
- D_1, D_2 : degree matrices of G_1, G_2
- ▶ $L_1 = D_1 A_1, L_2 = D_2 A_2$: Laplacians of G_1, G_2
- λ_1, λ_2 : eigenvalues (spectra) of L_1, L_2

• Metric:
$$\Delta = \sum_{i=1}^{k} (\lambda_{1_i} - \lambda_{2_i})^2$$
 where $k = \min_j \{ \frac{\sum_{i=1}^{k} \lambda_{j_i}}{\sum_{i=1}^{n} \lambda_{j_i}} > 0.9 \}$

• Metric:
$$\Delta = \sum_{i=1}^{k} (\lambda_{1_i} - \lambda_{2_i})^2$$
 where $k = \min_j \{ \frac{\sum_{i=1}^{k} \lambda_{j_i}}{\sum_{i=1}^{n} \lambda_{j_i}} > 0.9 \}$

• Quantifies how much two NN graphs are isospectral, i.e. they have the same spectrum (same sets of eigenvalues).

• Metric:
$$\Delta = \sum_{i=1}^{k} (\lambda_{1_i} - \lambda_{2_i})^2$$
 where $k = \min_j \{ \frac{\sum_{i=1}^{k} \lambda_{j_i}}{\sum_{i=1}^{n} \lambda_{j_i}} > 0.9 \}$

- Quantifies how much two NN graphs are isospectral, i.e. they have the same spectrum (same sets of eigenvalues).
- Isomorphic \rightarrow isospectral, but isospectral \rightarrow isomorphic

• Metric:
$$\Delta = \sum_{i=1}^{k} (\lambda_{1_i} - \lambda_{2_i})^2$$
 where $k = \min_j \{ \frac{\sum_{i=1}^{k} \lambda_{j_i}}{\sum_{i=1}^{n} \lambda_{j_i}} > 0.9 \}$

- Quantifies how much two NN graphs are isospectral, i.e. they have the same spectrum (same sets of eigenvalues).
- Isomorphic \rightarrow isospectral, but isospectral \rightarrow isomorphic

•
$$\Delta: G_1, G_2 \to [0,\infty)$$

• Metric:
$$\Delta = \sum_{i=1}^{k} (\lambda_{1i} - \lambda_{2i})^2$$
 where $k = \min_{j} \{ \frac{\sum_{i=1}^{k} \lambda_{ji}}{\sum_{i=1}^{n} \lambda_{ji}} > 0.9 \}$

- Quantifies how much two NN graphs are isospectral, i.e. they have the same spectrum (same sets of eigenvalues).
- Isomorphic \rightarrow isospectral, but isospectral \rightarrow isomorphic
- $\Delta: G_1, G_2 \rightarrow [0,\infty)$
- $\Delta = 0$: G_1, G_2 are isospectral (very similar)

• Metric:
$$\Delta = \sum_{i=1}^{k} (\lambda_{1_i} - \lambda_{2_i})^2$$
 where $k = \min_j \{ \frac{\sum_{i=1}^{k} \lambda_{j_i}}{\sum_{i=1}^{n} \lambda_{j_i}} > 0.9 \}$

- Quantifies how much two NN graphs are isospectral, i.e. they have the same spectrum (same sets of eigenvalues).
- Isomorphic \rightarrow isospectral, but isospectral \rightarrow isomorphic
- $\Delta: G_1, G_2 \to [0,\infty)$
- $\Delta = 0$: G_1, G_2 are isospectral (very similar)
- $\Delta \rightarrow \infty$: G_1, G_2 become less similar

• Metric:
$$\Delta = \sum_{i=1}^{k} (\lambda_{1_i} - \lambda_{2_i})^2$$
 where $k = \min_j \{ \frac{\sum_{i=1}^{k} \lambda_{j_i}}{\sum_{i=1}^{n} \lambda_{j_i}} > 0.9 \}$

Unsupervised cross-lingual learning assumptions

Unsupervised cross-lingual learning assumptions

• Besides isomorphism, several other implicit assumptions

Unsupervised cross-lingual learning assumptions

- Besides isomorphism, several other implicit assumptions
- May or may not scale to low-resource languages
- Besides isomorphism, several other implicit assumptions
- May or may not scale to low-resource languages

Conneau et al. (2018)

This work

- Besides isomorphism, several other implicit assumptions
- May or may not scale to low-resource languages

	Conneau et al. (2018)	This work
Languages	Dependent-marking, fusional and isolating	Agglutinative, many cases

- Besides isomorphism, several other implicit assumptions
- May or may not scale to low-resource languages

	Conneau et al. (2018)	This work
Languages	Dependent-marking, fusional and isolating	Agglutinative, many cases
Corpora	Comparable (Wikipedia)	Different domains

- Besides isomorphism, several other implicit assumptions
- May or may not scale to low-resource languages

	Conneau et al. (2018)	This work
Languages	Dependent-marking, fusional and isolating	Agglutinative, many cases
Corpora	Comparable (Wikipedia)	Different domains
Algorithms/ hyperparameters	Same	Different

1. Monolingual word embeddings:

Learn monolingual vector spaces *X* and *Y*.

1. Monolingual word embeddings:

Learn monolingual vector spaces X and Y.

2. Adversarial mapping:

Learn a translation matrix *W*. Train discriminator to discriminate samples from *WX* and *Y*.

3. Refinement (Procrustes analysis):

Build bilingual dictionary of frequent words using *W*. Learn a new *W* based on frequent word pairs.

3. Refinement (Procrustes analysis):

Build bilingual dictionary of frequent words using *W*. Learn a new *W* based on frequent word pairs.

4. Cross-domain similarity local scaling (CSLS):

Use similarity measure that increases similarity of isolated word vectors, decreases similarity of vectors in dense areas.

Extract identically spelled words in both languages

- Extract identically spelled words in both languages
- Use these as bilingual seed words

- Extract identically spelled words in both languages
- Use these as bilingual seed words
- Run refinement step of Conneau et al. (2018)

• Given a list of source language words, find the closest target language word in the cross-lingual embedding space

- Given a list of source language words, find the closest target language word in the cross-lingual embedding space
- Compare against a gold standard dictionary

- Given a list of source language words, find the closest target language word in the cross-lingual embedding space
- Compare against a gold standard dictionary
- Metric: Precision at 1 (P@1)

- Given a list of source language words, find the closest target language word in the cross-lingual embedding space
- Compare against a gold standard dictionary
- Metric: Precision at 1 (P@1)
- Use fastText monolingual embeddings

- Given a list of source language words, find the closest target language word in the cross-lingual embedding space
- Compare against a gold standard dictionary
- Metric: Precision at 1 (P@1)
- Use fastText monolingual embeddings

	Conneau et al. (2018)	This work
Languages (English to)	French, German, Chinese, Russian, Spanish	Estonian (ET), Finnish (FI), Greek (EL), Hungarian (HU), Polish (PL), Turkish

Unsupervised (Adversarial) 📕 Weakly supervised (Identical strings)

 Unsupervised approaches are challenged by languages that are not isolating and not dependent marking

Unsupervised (Adversarial) Weakly supervised (Identical strings)

- Unsupervised approaches are challenged by languages that are not isolating and not dependent marking
- Naive supervision leads to competitive performance on similar language pairs and better results for dissimilar pairs

• Eigenvector similarity strongly correlates with BDI performance ($\rho \sim 0.89$)

 Source and target embeddings induced on 3 corpora: EuroParl (EP), Wikipedia (Wiki), Medical (EMEA)

 Source and target embeddings induced on 3 corpora: EuroParl (EP), Wikipedia (Wiki), Medical (EMEA)

English-Spanish

 Source and target embeddings induced on 3 corpora: EuroParl (EP), Wikipedia (Wiki), Medical (EMEA)

English-Spanish

Source and target embeddings induced on 3 corpora: EuroParl (EP), Wikipedia (Wiki), Medical (EMEA)

English-Spanish

 Source and target embeddings induced on 3 corpora: EuroParl (EP), Wikipedia (Wiki), Medical (EMEA)

 Unsupervised approaches break down when domains are dissimilar

 Source and target embeddings induced on 3 corpora: EuroParl (EP), Wikipedia (Wiki), Medical (EMEA)

English-Spanish

 Unsupervised approaches break down when domains are dissimilar

 Domain differences may exacerbate difficulties of generalising across dissimilar languages

Impact of domain differences

 Weak supervision helps to bridge domain differences, but performance still deteriorates

• Settings: English with skipgram, win=2, ngrams=3-6

- Settings: English with skipgram, win=2, ngrams=3-6
- Vary hyper-parameters of Spanish embeddings

- Settings: English with skipgram, win=2, ngrams=3-6
- Vary hyper-parameters of Spanish embeddings

- Settings: English with skipgram, win=2, ngrams=3-6
- Vary hyper-parameters of Spanish embeddings

- Settings: English with skipgram, win=2, ngrams=3-6
- Vary hyper-parameters of Spanish embeddings

 Different algorithms introduce embedding spaces with wildly different structures.

Impact of dimensionality 90 67.5 P@1 45 22.5 0 **EN-ES** EN-EL EN-HU EN-ET **EN-FI EN-PL EN-TR** 300-dimensional embeddings 40-dimensional embeddings

• Worse performance overall, but *better* performance for dissimilar language pairs (Estonian, Finnish, Greek).

Impact of dimensionality 90 67.5 P@1 45 22.5 $\left(\right)$ EN-ES EN-ET **EN-FI EN-EL** EN-HU **EN-PL** EN-TR 300-dimensional embeddings 40-dimensional embeddings

- Worse performance overall, but *better* performance for dissimilar language pairs (Estonian, Finnish, Greek).
- Monolingual word embeddings may overfit to rare peculiarities of languages.

Part-of-speech:

Performance on verbs is lowest across the board.

Part-of-speech:

Performance on verbs is lowest across the board.

Frequency:

Sensitivity to frequency for Hungarian, but less so for Spanish.

Part-of-speech:

Performance on verbs is lowest across the board.

Frequency:

Sensitivity to frequency for Hungarian, but less so for Spanish.

Homographs:

Lower precision due to loan words/proper names. High precision for free with weak supervision.

 Word embedding spaces are not approximately isomorphic across languages.

- Word embedding spaces are not approximately isomorphic across languages.
- We can use **eigenvector similarity** to characterise the relatedness of two monolingual vector spaces.

- Word embedding spaces are not approximately isomorphic across languages.
- We can use **eigenvector similarity** to characterise the relatedness of two monolingual vector spaces.
- Eigenvector similarity strongly correlates with unsupervised bilingual dictionary induction performance.

- Word embedding spaces are not approximately isomorphic across languages.
- We can use **eigenvector similarity** to characterise the relatedness of two monolingual vector spaces.
- Eigenvector similarity **strongly correlates** with unsupervised bilingual dictionary induction performance.
- Limitations of unsupervised bilingual dictionary induction:

- Word embedding spaces are not approximately isomorphic across languages.
- We can use **eigenvector similarity** to characterise the relatedness of two monolingual vector spaces.
- Eigenvector similarity strongly correlates with unsupervised bilingual dictionary induction performance.
- Limitations of unsupervised bilingual dictionary induction:
 - Morphologically rich languages.

- Word embedding spaces are not approximately isomorphic across languages.
- We can use **eigenvector similarity** to characterise the relatedness of two monolingual vector spaces.
- Eigenvector similarity strongly correlates with unsupervised bilingual dictionary induction performance.
- Limitations of unsupervised bilingual dictionary induction:
 - Morphologically rich languages.
 - Corpora from **different domains**.

- Word embedding spaces are not approximately isomorphic across languages.
- We can use **eigenvector similarity** to characterise the relatedness of two monolingual vector spaces.
- Eigenvector similarity strongly correlates with unsupervised bilingual dictionary induction performance.
- Limitations of unsupervised bilingual dictionary induction:
 - Morphologically rich languages.
 - Corpora from **different domains**.
 - Different word embedding algorithms.