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Model used in this work

(Dong and Lapata, 2016; Jia and Liang, 2016)

Neural Semantic Parsing (NSP)
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Most models always tend to guess some outputs

We also want to know how confident they are

Confidence Modeling is Important
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Alexa, buy me 
something from 

Whole Foods

Buying 
Whole Foods

http://time.com/4821460/amazon-buying-whole-foods-twitter/



From the perspective of applications

More reliable decisions

Generate clarification questions to verify the results

Nonlinearity of neural networks

For linear models, 𝑝(𝑦|𝑥) ∝ ∑𝑠𝑐𝑜𝑟𝑒𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
Unclear for neural models (Johansen and Socher, 2017)

Lack of explicit lexicons or templates

Difficult to trace errors and inconsistencies

Motivation
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Estimate confidence scores for NSP

Higher score -> the prediction is more likely correct

Provide uncertainty interpretations

Which parts of input contribute to uncertain predictions

Research Goal
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Confidence Estimation - Overview
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Model is unconfident about 𝑝(𝑦|𝑥)

Model uncertainty

Unsure about model parameters or structure

Data uncertainty

Out-of-distribution/-domain examples

Estimate 𝑝(𝑦|𝑥) reliably, but the entropy is large

Input uncertainty

Input itself is unspecific/ambiguous, which would lead to 
several different correct outputs

Confidence Metrics
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Posterior probability

Sequence-level: log 𝑝 𝑦 𝑥

Token-level: avg log 𝑝 𝑦𝑡 𝑥, 𝑦<𝑡 , min{𝑝 𝑦𝑡 𝑥, 𝑦<𝑡 }

Dropout as a Bayesian approximation (Yarin Gal, Zoubin
Ghahramani, 2016)

Model Uncertainty
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Out-of-distribution/-domain examples

𝑝(𝑥|𝒟): probability of input

KenLM (Heafield et al., 2013) estimated on the training set

Number of unknown words of input

Data Uncertainty
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Variance of top candidates var 𝑝 𝑦𝑖 𝑥

Entropy of decoding 𝐻 𝑦|𝑥 = −∑𝑦′ 𝑝 𝑦′ 𝑥 log 𝑝 𝑦′ 𝑥

Approximated by Monte Carlo sampling

Input Uncertainty
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Use logistic regression to fit F1 scores of outputs

Logistic loss: ℒ = ∑𝑖[𝑦𝑖 ln 1 + 𝑒− ො𝑦𝑖 + (1 − 𝑦𝑖) ln(1 + 𝑒 ො𝑦𝑖)]

Confidence Scoring
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Model Uncertainty Data Uncertainty Input Uncertainty

Token-level • Dropout 
perturbation

• Gaussian noise
• Posterior probability

• Probability of input
• Number of 

unknown tokens

• Variance of top 
candidates

• Entropy of decoding
Sequence-level

Confidence Metrics

Tree Boosting Model

Confidence Score ∈ (0,1)



Trace prediction uncertainty back to input words
Users can verify or refine the input quickly

Benefit the development cycle IF
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Uncertainty Interpretation
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1) Initialize decoder's output neuron with uncertainty scores

2) Backpropagate scores layer-wisely

3) Obtain scores 𝑢𝑥𝑖 for input words

Uncertainty Backpropagation
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Uncertainty Backpropagation
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𝑢𝑚: 
uncertainty 

score

Parent 𝑚
= {𝑝1, 𝑝2}

Child 𝑚
= {𝑐1, 𝑐2}



Uncertainty Backpropagation
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𝑢𝑚 = ෍

𝑐∈Child(𝑚)

𝑣𝑚
𝑐 𝑢𝑐

𝑣𝑚
𝑐1: contribution 

ratio (how much 

we backprop 

from 𝑐1 to 𝑚)

Scores are backpropagated 

from child neurons



Uncertainty Backpropagation
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෍

𝑝∈Parent(𝑚)

𝑣𝑝
𝑚 = 1 Contribution ratios from 𝑚 to its 

parent neurons are normalized to 1



Fully-connected layers

If 𝑝1 contributes more to 𝑚’s value, ratio 𝑣𝑝1
𝑚 should 

be larger (i.e., backprop more from 𝑚 to 𝑝1)

Backpropagation Rules
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𝑣𝑝1
𝑚 =

|𝑊1𝑝1|

|𝑊1𝑝1| + |𝑊1𝑝1|
𝑚 = 𝜎(𝑊1𝑝1 +𝑊2𝑝2)



IFTTT-style semantic parsing (Quirk et al., 2015)
“Archive your missed calls from Android to Google Drive”

Python code generation (Yin et al., 2017)

Experiments
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Confidence Estimation
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Confidence scores are used as threshold to filter out 
uncertain examples

Confidence Estimation
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IFTTT



Importance of Confidence Metrics

21 / 24

0

0.2

0.4

0.6

0.8

1

Fe
at

u
re

 Im
p

o
rt

an
ce

IFTTT Python

Model Uncertainty Data Uncertainty Input Uncertainty



Agreement of top-4 uncertain input words

Between model prediction and gold standard

Uncertainty Interpretation
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Examples - IFTTT
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ATT: attention; BP: uncertainty backpropagation



Thanks!
Q&A

Code Available:

http://homepages.inf.ed.ac.uk/s1478528


