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Jointly Learning to Score and Select Sentences (NeuSum)

Experiments

Discussion

Dataset: CNN/Daily Mail dataset

Evaluation Metric: ROUGE F1 (full length)

Human Evaluation: Rankings of NEUSUM and NN-SE (lower is better) 

Extractive Document Summarization

Sentence Scoring

• Feature based methods: word 

probability, TF-IDF, etc…

• Graph-based methods: 

TextRank, LexRank, etc…

• Neural Network based: 

CNN/RNN sentence encoding

Sentence Selection

• Simple greedy selection

• Maximal Marginal Relevance 

(MMR)

• Integer Linear Programming 

(ILP)

• Submodular functions
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Jointly Score and Select Sentences!

Separated methods

Unsupervised

Abstractive

Rule-based 

* Systems trained and evaluated on the anonymized dataset, and so are not strictly comparable to our results on the original text.

• Our NeuSum model beats the state-of-the-art systems

Informativeness (Info), redundancy (Rdnd) and overall quality of 

NN-SE and NeuSum on a sampled set (lower is better)

Hierarchical Document Encoding

• Sentence Level Encoding

• Words to sentence (BiGRU, concat last forward and backward)

• Document Level Encoding

• Context information of sentences (BiGRU, concat forward and backward) 

Sentence Scoring

• Two-layer MLP (calculate score gain)

Score of sentence i Representation

of sentence i

Objective function

• Kullback-Leibler (KL) divergence 

ℎ𝑡 = GRU(𝑠𝑡−1, ℎ𝑡−1) 𝛿 𝑆𝑖 = 𝑊𝑠tanh(𝑊𝑞ℎ𝑡 +𝑊𝑑𝑠𝑖)

𝑔 𝑆𝑖 = 𝑟 𝕊𝑡−1 ∪ 𝑆𝑖 − 𝑟(𝕊𝑡−1)

෤𝑔 𝑆𝑖 =
𝑔 𝑆𝑖 −min(𝑔(𝑆))

max 𝑔 𝑆 −min(𝑔(𝑆))

𝑄 𝑆𝑖 =
exp(𝜏 ෤𝑔 𝑆𝑖 )

σ𝑘=1
𝐿 exp(𝜏 ෤𝑔 𝑆𝑘 )

𝑃 መ𝑆𝑡 = 𝑆𝑖 =
exp(𝛿(𝑆𝑖))

σ𝑘=1
𝐿 exp(𝛿(𝑆𝑘)))

Loss: 𝐽 = 𝐷𝐾𝐿(𝑃 ∥ 𝑄)

Sentence Extractor

• GRU (maintain the extraction state)

Extractor state Last extracted 

sentence vector

Sentence Selection:

• Choose the sentence with maximum score gain

Score 

gain

Min-Max

Normalization
Temperature

ROUGE score

Model predicted score

Advantages:

• Dynamic Sentence Scoring: Score each 

sentence every time when selecting sentences

• Selection strategy can be simple

• End-to-end training

1. Precision at Step-t

Conclusion

• NeuSum is slightly better for the first selection

• Best sentence might be easy to find

• Large difference at the second step

• NeuSum can remember the selection history

• Similar again for the last selection

• Error propagation

2. Position of Selected Sentences

• Oracle is much more diverse

• Separated method (NN-SE) chooses lots of LEAD3 

sentences (80.91%)

• NeuSum selects less LEAD3 sentences (58.64%)

• Joint sentence scoring and selection enables more 

accurate and diverse (position) selection

• Sentence scoring can leverage information from 

selection history

• Future work: adapt NeuSum for multi-document 

summarization
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