

Using Intermediate Representations to Solve Math Word Problems

Danqing Huang¹, Jin-Ge Yao², Chin-Yew Lin², Qingyu Zhou³, Jian Yin¹ Sun Yat-sen University¹, Microsoft Research², Harbin Institute of Technology³

Experiment

	NumWord (Linear)	NumWord (ALL)	Dolphin18K (Linear)
	26.8%	20.1%	13.1%
	50.8%	45.2%	13.9%
	56.7%	54.0%	15.1%
lter	61.6%	57.1%	16.8%
	63.6%	60.2%	n/a
17)	20.8%	n/a	28.4%

MLE & IL

Iterative Labeling

- better performance
- faster convergence

Effect of pretrain in Iterative Labeling

ımWord near)	NumWord (ALL)	Dolphin18K (Linear)
.1%	54.9%	14.9%
.6%	57.1%	16.8%

Neural? Rules? Features?

"John has 10 apples. How many apples does John have

"I think of a number, double it, add 3, multiply the answer by 3 and then add on the original number."